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Abstract
This paper tries to identify waiting events that limit the
maximal throughput of a multi-threaded application. To
achieve this goal, we not only need to understand an
event’s impact on threads waiting for this event (i.e., lo-
cal impact), but also need to understand whether its im-
pact can reach other threads that are involved in request
processing (i.e., global impact).

To address these challenges, wPerf computes the local
impact of a waiting event with a technique called cascad-
ed re-distribution; more importantly, wPerf builds a wait-
for graph to compute whether such impact can indirectly
reach other threads. By combining these two techniques,
wPerf essentially tries to identify events with large im-
pacts on all threads.

We apply wPerf to a number of open-source multi-
threaded applications. By following the guide of wPerf,
we are able to improve their throughput by up to 4.83×.
The overhead of recording waiting events at runtime is
about 5.1% on average.

1 Introduction

This paper proposes wPerf, a generic off-CPU analysis
method to identify critical waiting events that limit the
maximal throughput of multi-threaded applications.

Developers often need to identify the bottlenecks of
their applications to improve their throughput. For a
single-threaded application, one can identify its bottle-
neck by looking for the piece of code that takes the most
time to execute, with the help of tools like perf [61] and
DTrace [20]. For a multi-threaded application, this task
becomes much more challenging because a thread could
spend time waiting for certain events (e.g., lock, I/O,
condition variable, etc.) as well as executing code: both
execution and waiting can create bottlenecks.

Accordingly, performance analysis tools targeting
multi-threaded applications can be categorized into two

types: on-CPU analysis to identify bottlenecks created
by execution and off-CPU analysis to identify bottle-
necks created by waiting [57]. As shown in previous
works, off-CPU analysis is important because optimiz-
ing waiting can lead to a significant improvement in per-
formance [3, 4, 9, 14, 42, 70–72, 77].

While there are systematic solutions for on-CPU anal-
ysis (e.g., Critical Path Analysis [40] and COZ [16]), ex-
isting off-CPU analysis methods are either inaccurate or
incomplete. For example, a number of tools can rank
waiting events based on their lengths [36, 58, 75], but
longer waiting events are not necessarily more important
(see Section 2); some other tools design metrics to rank
lock contention [2, 18, 76], which is certainly one of the
most important types of waiting events, but other waiting
events, such as waiting for condition variables or I/Os,
can create a bottleneck as well (also see Section 2). As
far as we know, no tools can perform accurate analysis
for all kinds of waiting events.

To identify waiting events critical to throughput, the
key challenge is a gap between the local impact and the
global impact of waiting events: given the information
of a waiting event, such as its length and frequency, it
may not be hard to predict its impact on the threads wait-
ing for the event (i.e., local impact). To improve overall
application throughput, however, we need to improve the
throughput of all threads involved in request processing
(called worker threads in this paper). Therefore, to un-
derstand whether optimizing a waiting event can improve
overall throughput, we need to know whether its impact
can reach all worker threads (i.e., global impact). These
two kinds of impacts are not always correlated: events
with a small local impact usually have a small global im-
pact, but events with a large local impact may not have a
large global impact. As a result, it’s hard to directly rank
the global impact of waiting events.

To address this problem, we propose a novel technique
called “wait-for graph” to compute which threads a wait-
ing event may influence. This technique is based on a
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simple observation: if thread B never waits for thread A,
either directly or indirectly, then optimizing A’s waiting
events would not improve B, because neither B’s execu-
tion speed nor B’s waiting time would be affected. Fol-
lowing this observation, wPerf models the application as
a wait-for graph, in which each thread is a vertex and a
directed edge from A to B means thread A sometimes
waits for B. We can prove that if such a graph contains
any knots with worker threads inside them, we must op-
timize at least one waiting event in each of these knots.
Intuitively, this conclusion is a generalization of our ob-
servation: a knot is an inescapable section of the graph
(see formal definition in Section 3.1), which means the
worker threads in a knot never wait for outside thread-
s, so optimizing outside events would not improve these
worker threads. However, to improve overall through-
put, we must improve all worker threads, which means
we must optimize at least one event in the knot. In other
words, each knot must contain a bottleneck.

A knot means there must exist cyclic wait-for relation-
ship among its threads. In practice, such cyclic wait-for
relationship can be caused by various reasons, such as
blocking I/Os, load imbalance, and lock contention.

For complicated knots, wPerf refines them by trim-
ming edges whose local impact is small, because events
with little local impact usually have little global impact
and thus optimizing them would have little impact on
the application. For this purpose, the length of a waiting
event can serve as a natural heuristic for its local impact,
but using it directly may not be accurate when waiting
events are nested. For example, if thread A wakes up
B and then B wakes up C later, adding all C’s waiting
period to edge C→ B is misleading because part of this
period is caused by B waiting for A. To solve this prob-
lem, we introduce a technique called “cascaded redistri-
bution” to quantify the local impact of waiting events: if
thread A waits for thread B from t1 to t2, wPerf checks
what B is doing during t1 to t2 and if B is waiting for an-
other thread, wPerf will re-distribute the corresponding
weight and perform the check recursively.

Given such local impact as a weight on each edge, w-
Perf can refine a complicated knot by continuously re-
moving its edges with small weights, till the knot be-
comes disconnected, which allows wPerf to further iden-
tify smaller knots. wPerf repeats these two procedures
(i.e., identify knots and refine knots) iteratively until the
graph is simple enough, which should contain events
whose local impact is large and whose impact can po-
tentially reach all worker threads.

We apply wPerf to various open-source applications.
Guided by the reports of wPerf, we are able to improve
their throughput by up to 4.83×. For example, we find
in ZooKeeper [34], using blocking I/Os and limiting the
number of outstanding requests combined cause ineffi-

Thread A Thread B

while(true)
recv req from network
funA(req) //2ms
queue.enqueue(req)

while(true)
req = queue.dequeue()
funB(req) //5ms
log req to a file
sync //5ms

(a) Code (queue is a producer-consumer queue with max size k)
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(b) Runtime execution.

Figure 1: An example of a multi-threaded program with
a bottleneck waiting event.

ciency when the workload is read-heavy: in this case, for
each logging operation, ZooKeeper can only batch a s-
mall number of writes, leading to inefficient disk perfor-
mance. wPerf’s runtime overhead of recording waiting
events is about 5.1% on average.

2 Motivating Example

This section presents an example that motivates our
work. As shown in Figure 1: since thread B needs to
sync data to the disk (Figure 1a), B and the disk cannot
process requests in parallel at runtime (Figure 1b). As
a result, B and the disk combined take 10ms to process
a request, which becomes the bottleneck of this applica-
tion. As one can see, this application is saturated while
none of its threads or disks are fully saturated. Further-
more, one can observe the following phenomena:

• Off-CPU analysis is important. In this example,
on-CPU analysis like Critical Path Analysis [40] or
COZ [16] can identify that funB and disk write are
worth optimizing, which is certainly correct, but we
should not neglect that the blocking pattern between
B and the disk is worth optimizing as well: if we can
change thread B to write to disk asynchronously, we
could double the throughput of this application.

• While lock contention is well studied, we should not
neglect other waiting events. The bottleneck of this
example is not caused by contentions, but by waiting
for I/Os. Replacing the disk with thread C and letting
B wait for C on a condition variable can create a simi-
lar bottleneck.

• Longer waiting events are not necessarily more impor-
tant. In other words, events with a large local impact
may not have a large global impact. In this example,
thread A spends 80% of its time waiting for B, which
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is longer than the time B spends waiting for the disk,
but it is because A has less work than B and is not the
cause of the bottleneck.

Although a number of tools like off-CPU flame
graph [58] have been developed to help off-CPU anal-
ysis, we are not aware of any tools that can answer the
question which waiting events are important, when con-
sidering all kinds of waiting events. As a result, such
investigation largely relies on the efforts of the develop-
ers. For the above simple example, it may not be difficult.
In real applications, however, such patterns can become
complicated, involving many more threads and devices
(see Section 5). These phenomena motivate us to devel-
op a new off-CPU analysis approach, which should be
generic enough to handle all kinds of waiting events.

3 Identify Bottleneck Waiting Events

In this paper, we propose wPerf, a generic approach
to identify bottleneck waiting events in multi-threaded
applications. To be more specific, we assume the tar-
get application is processing requests from either remote
clients or user inputs, and the goal of wPerf is to iden-
tify waiting events whose optimization can improve the
application’s throughput to process incoming requests.

wPerf models the target application as a number of
threads (an I/O device is modeled as a pseudo thread). A
thread is either executing some task or is blocked, wait-
ing for some event from another thread. A task can be
either a portion of an incoming request or an internal task
generated by the application. A thread can be optimized
by 1) increasing its speed to execute tasks; 2) reducing
the number of tasks it needs to execute; or 3) reducing
its waiting time. Since wPerf targets off-CPU analysis, it
tries to identify opportunities for the third type.

To identify bottleneck waiting events, wPerf uses t-
wo steps iteratively to narrow down the search space: in
the first step, it builds the wait-for graph to identify sub-
graphs that must contain bottlenecks. If these subgraphs
are large, wPerf refines them by removing edges with lit-
tle local impact.

In this section, we first present a few definitions, then
explain the basic idea of wPerf in a simplified model, and
finally extend the model to general applications.

3.1 Definitions
Definition 3.1. Worker and background threads. A
thread is a worker thread if its throughput of process-
ing its tasks grows with the application’s throughput to
process its incoming requests; a thread is a background
thread if its throughput does not grow with the through-
put of the application.

A B Disk

Figure 2: Wait-for graph of the application in Figure 1.

For example, threads that process incoming requests
are obvious worker threads; threads that perform tasks
like garbage collection or disk flushing are also work-
er threads, though they usually run in the background;
threads that perform tasks like sending heartbeats are
background threads.

This definition identifies threads that must be opti-
mized to improve overall application throughput (i.e.,
worker threads), because they are directly or indirectly
involved in processing incoming requests. In real appli-
cations, we find most of the threads are worker threads.

Definition 3.2. Wait-for relationship. Thread A directly
waits for thread B if A sometimes is woken up by thread
B. Thread A indirectly waits for B if there exists a se-
quence of threads T1, T2, ... Tn such that T1 = A , Tn = B,
and Ti directly waits for T(i+1). Thread A waits for thread
B if A either directly or indirectly waits for B.

Definition 3.3. Wait-for graph. We construct a wait-for
graph for a multi-threaded application in the following
way: each vertex is a thread and a directed edge from
thread A to B means A directly waits for B.

For example, Figure 2 shows the wait-for graph for the
application shown in Figure 1. One can easily prove that
A waits for B if there is a directed path from A to B.

Definition 3.4. Knot and sink. In a graph, a knot is a
nonempty set K of vertices such that the reachable set of
each vertex in K is exactly set K; a sink is a vertex with
no edges directed from it [32].

Intuitively, knot and sink identify minimal inescapable
sections of a graph. Note that by definition, a vertex with
a self-loop but no other outgoing edges is a knot.

3.2 Identify bottleneck waiting events in a
simplified model

In this simplified model, we make the following assump-
tions and we discuss how to relax these assumptions in
the next section: 1) each application is running a fixed
number of threads; 2) there are more CPU cores than the
number of threads; 3) all threads are worker threads; 4)
threads are not performing any I/O operations. Our algo-
rithm uses two steps to narrow down the search space.

3.2.1 Step 1: Identifying knots

Our algorithm first narrows down the search space by
identifying subgraphs that must contain bottlenecks,
based on the following lemma and theorem.
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Lemma 3.1. If thread B never waits for A, reducing A’s
waiting time would not increase the throughput of B.

Proof. If we don’t optimize the execution of B, the only
way to improve B’s throughput is to give it more tasks,
i.e., reduce its waiting time. However, since B never
waits for A, optimizing A would not affect B’s waiting
time. Therefore, B’s throughput is not affected.

Theorem 3.2. If the wait-for graph contains any knots,
to improve the application’s throughput, we must opti-
mize at least one waiting event in each knot.

Proof. We prove by contradiction: suppose we can im-
prove the application’s throughput without optimizing
any events in a knot. On one hand, since all threads
are worker threads, if overall throughput were improved,
the throughput of each thread should increase (Defini-
tion 3.1). On the other hand, because a knot is an in-
escapable section of a graph, threads in the knot never
wait for outside threads, so optimizing outside threads or
events would not improve the throughput of threads in
the knot (Lemma 3.1). These two conclusions contradict
and thus the theorem is proved.

For example, in Figure 2, thread B and the disk form a
knot and thus at least one of their waiting events must be
optimized to improve the application’s throughput.

A graph must contain either knots or sinks or
both [32]. A sink means the execution of the correspond-
ing thread is the bottleneck, which is beyond the scope of
off-CPU analysis. A knot means there must exist cyclic
wait-for relationship among multiple threads, which can
cause the application to saturate while none of the thread-
s on the cycle are saturated. In practice, such cyclic wait-
for relationship can happen for different reasons, among
which the following ones are common:
• Lock contention. Multiple threads contending on a

lock is probably the most common reason to cause a
cyclic wait-for relationship. In this case, threads con-
tending on the lock may wait for each other.

• Blocking operation. Figure 1 shows an example of this
problem: since B needs to wait for the responses from
the disk, and the disk needs to wait for new requests
from B, there exists a cyclic wait-for relationship be-
tween B and the disk.

• Load imbalance. Many applications work in phases
and parallelize the job in each phase [19, 69]. Imbal-
ance across phases or imbalance across threads in the
same phase can create a cycle. For example, suppose
in phase 1, thread A executes three tasks and thread B
executes one task; in phase 2, A executes one task and
B executes three tasks: in this case, A needs to wait
for B at the end of phase 1 and B needs to wait for A
at the end of phase 2, creating a cycle.

3.2.2 Step 2: Refining knots

If a knot is small, the developers may manually inves-
tigate it and decide how to optimize. For a large knot,
wPerf further narrows down the search space by remov-
ing edges whose optimization would have little impact
on the application. However, accurately predicting the
global impact of a waiting event is a challenging problem
in the first place. To address this challenge, we observe
that the local impact of a waiting event can be viewed as
the upper bound of the global impact of this event: im-
provement to all threads naturally includes improvement
to threads waiting for this event, so the local impact of
an event should be at least as large as its global impact.

Following this observation, wPerf removes edges with
a small local impact until the knot becomes disconnect-
ed. When disconnection happens, wPerf tries to identi-
fy smaller knots. wPerf repeats these two procedures—
identifying knots and trimming edges with a small local
impact—until the result is simple enough for developers.
We discuss the termination condition in Section 4.3. By
combining these two procedures, wPerf essentially tries
to identify the edges with a large impact on all worker
threads.

Since local impact marks the upper bound of global
impact, knot refinement will not bring false negatives
(i.e., removing important edges), which means the us-
er will not miss important optimization opportunities.
However, it may bring false positives (i.e., not remov-
ing unimportant edges), which requires additional effort
from the user, but in our case studies, we find such ad-
ditional effort is not significant, mainly because many
edges with a large local impact are outside of the knot
and thus are removed.

The total waiting time spent on an edge is a natural
heuristic to quantify the local impact of the edge, but we
find it may be misleading when waiting events are nest-
ed. To illustrate the problem, we show an example in
Figure 3: thread C wakes up B at time t1 and B wakes up
A at time t2. In practice, such nested waiting can happen
in two ways: first, it is possible that C wakes up B and
A simultaneously and B happens to execute first (e.g., C
releases a lock that both A and B try to grab) and we call
this type “symmetric waiting”; second, it is also possible
that A’s Task 3 depends on B’s Task 2, which depends
on C’s Task 1. We call this type “asymmetric waiting”.
However, from the recorded waiting events, wPerf does
not know which type it is, which means its solution to
compute the edge weights should work for both types.

To motivate wPerf’s solution, we show several op-
tions we have tried. The naive solution (Graph1) adds
weight (t2− t0) to edge A→ B and weight (t1− t0) to
edge B→ C. This solution underestimates the impor-
tance of B → C, because reducing the time spent on
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Figure 3: Building edges weights from length of waiting events (Graphs 1-3 are our failed attempts).

B→C can automatically reduce the time spent on A→B.
Graph2 moves the overlapping part (t1− t0) from A→ B
to B→C, which increases the importance of B→C, but
it underestimates the importance of A→ B: in asymmet-
ric waiting, it is possible to optimize A→ B but not op-
timize B→ C, so it is inappropriate to assume optimiz-
ing A→ B can only reduce the waiting time by t2− t1.
Graph3 draws a new edge A→C and moves the weight
of (t1− t0) to the new edge, indicating that (t1− t0) is
actually caused by waiting for C: this approach makes
sense for symmetric waiting, but is confusing for asym-
metric waiting, in which A does not directly wait for
C. wPerf’s solution is to keep weight (t2− t0) for edge
A→ B, which means optimizing this edge can reduce A’s
waiting time by up to (t2− t0), and increases the weight
of B→C by (t1− t0), which means optimizing this edge
can lead to improvement in both B and A. wPerf’s solu-
tion may seem to be unfair for symmetric waiting, but for
symmetric waiting, A and B should have similar chance
to be woken up first, so if we test the application for suf-
ficiently long, the weights of A→ B and B→ C should
be close.

Following this idea, wPerf introduces a cascaded re-
distribution algorithm to build the weights in the general
case: at first, wPerf assigns a weight to an edge accord-
ing to the waiting time spent on that edge. If wPerf find-
s while thread A is waiting for thread B, thread B also
waits for thread C (length t), wPerf increases the weight
of (B→C) by t. If C waits for other threads during the
same period of time, wPerf will perform such adjustment
recursively (see the detailed algorithm in Section 4.2).

3.3 Extending the model
Next, we extend our model by relaxing its assumptions.

Not enough CPUs. A thread may also wait because
all CPU cores are busy (i.e., the thread is in “runnable”
state). We can record the runnable time of each thread:
if a thread in a knot is often in the runnable state, then
the application may benefit from using more CPU cores
or giving those bottleneck threads a higher priority.

I/Os. wPerf models an I/O device as a pseudo thread.
If a normal thread sometimes waits for an I/O to com-
plete, wPerf draws an edge from the normal thread to the
corresponding I/O thread. If an I/O device is not fully
utilized (see Section 4.1), wPerf draws an edge from the

I/O thread to all normal threads that have issued I/Os to
this device, meaning the device waits for new I/Os from
these normal threads.

Busy waiting. Some threads use busy waiting to con-
tinuously check whether another thread has generated the
events. A typical example is a spin lock. From the OS
point of view, a thread that is busy waiting is not count-
ed as waiting, because it is executing code; at the logi-
cal level, however, time spent on busy waiting should be
counted as waiting time in our model. We discuss how
to trace such events in Section 4.1.

Background threads. A knot consisting of only back-
ground threads does not have to be optimized to improve
the application’s throughput, because the throughput of a
background thread does not grow with the application’s
throughput. Note that though not necessary, optimizing
such a knot may still be beneficial. For example, suppose
a background thread needs to periodically send a heart-
beat, during which it needs to grab a lock and thus may
block a worker thread. In this case, reducing the locking
time of the background thread may improve the worker
threads contending on the same lock, but it is not nces-
sary since optimizing those worker threads may improve
the application’s throughput as well. Therefore, wPer-
f reports such a knot to the user, removes the knot, and
continues to analyze the remaining graph, because there
may exist other optimization opportunities. wPerf uses
the following heuristic to identify such a knot: if the knot
does not contain any I/O threads and the sum of the CPU
utilization of all threads in the knot is less than 100%,
wPerf will report it, because this means some threads in
the knot sleep frequently, which is a typical behavior of
background threads.

Short-term threads. Some applications create a new
thread for a new task and terminate the thread when
the task finishes. Such short-term threads do not follow
our definition of worker thread, because their through-
put does not grow with the application’s throughput. To
apply our idea, wPerf merges such short-term threads
into a virtual long-running thread: if any of the short-
term threads is running/runnable, wPerf marks the vir-
tual thread as running/runnable; otherwise, wPerf marks
the virtual thread as blocked, indicating it is waiting for
new tasks from the thread that is creating these short-
term threads.
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4 Design and Implementation

To apply the above ideas, wPerf incorporates three com-
ponents: the recorder records the target application’s and
the OS’s waiting events at runtime; the controller re-
ceives commands from the user and sends the commands
to the recorder; the analyzer builds the wait-for graph
from the recorded events offline and tries to identify
knots or sinks. In this section, we present how recorder
and analyzer work in detail.

4.1 Recording sufficient information
The responsibility of the recorder is to capture sufficient
information to allow the analyzer to build the wait-for
graph. Towards this goal, such information should be
able to answer two questions: 1) if a thread is waiting,
which thread is it waiting for? and 2) how long does a
thread spend on waiting for another thread? The former
will allow us to create edges in the wait-for graph, and
the latter will allow us to compute weights for edges.

Profiling tools (e.g., perf [61], DTrace [20], ETW [1],
etc.) can record events at different layers. We decide
to record waiting events at low layers (i.e. CPU schedul-
ing and interrupt handling) because events at lower layers
usually can provide more accurate answers to the above
two questions. Taking I/O waiting as an example, one
option is to record the lengths of related system calls, but
such information is not precise: it is possible that most
of the time is indeed spent on waiting for I/Os to com-
plete; it is possible that much time is spent on in-kernel
processing, such as data copy; it is also possible that in
the kernel, this system call contends with another thread
(e.g., write to the same file). Recording at lower layers,
on the other hand, can provide precise information.

Following this observation, wPerf uses kprobe [41] to
record key waiting events in the kernel, with one excep-
tion about busy waiting. Since we implement wPerf on
Linux, next we first present the background about how
Linux performs scheduling and interrupt handling and
then present what information wPerf records.

Background. A thread can be in different states: a
thread is running if it is being executed on a CPU; a
thread is runnable if it is ready to run but has not been
scheduled yet, maybe because all CPUs are busy; a
thread is blocked if it is waiting for some events and thus
cannot be scheduled. While an application can block or
unblock a thread through corresponding system calls, OS
scheduling module decides which threads to run.

When an interrupt is triggered, CPU jumps to the pre-
defined interrupt request (IRQ) function, preempting the
current thread running on the CPU. An IRQ function is
usually not executed in a thread context, so it is not con-
trolled by scheduling, which means wPerf has to record

IRQ events as well as scheduling events. An IRQ func-
tion can wake up a blocked thread: this is common when
the thread is waiting for I/Os to complete.

Recording scheduling events. For CPU scheduling,
wPerf records two key functions: switch to and
try to wake up. try to wake up changes a thread’s s-
tate from blocked to runnable, which can be invoked
in functions like pthread mutex unlock or when an I/O
completes (usually in an IRQ). For this function, wPerf
records the timestamp, the thread ID of the thread to be
woken up, and the entity (either a thread or an IRQ) that
invokes the wakeup. switch to switches out a thread
from a CPU and switches in another. The thread that is
switched in must be in running state; the one that get-
s switched out could be either in runnable state, which
means this switch is caused by CPU scheduling, or in
blocked state, which means this switch is caused by
events like pthread mutex lock or issuing an I/O. wPerf
records the timestamp and the states of both threads.

Recording IRQ events. wPerf intercepts IRQ func-
tions to record its starting time, ending time, its type,
and which CPU it runs. To know IRQ type, wPerf in-
tercepts soft IRQ functions defined in interrupt.h, each
for a specific type of device. By utilizing the function
name, wPerf can know what type of hardware device
triggers the interrupt, but this approach has a limitation
that it cannot distinguish different instances of the same
type of devices. This problem could be solved if wPerf
can record the IRQ number, which is unique to each de-
vice, but unfortunately in Linux, IRQ number is not ob-
servable to every IRQ function. Modifying Linux kernel
could solve this problem, but our current implementation
tries to avoid kernel modification for portability.

Recording information for I/O devices. wPerf mod-
els an I/O device as a pseudo I/O thread (Section 3.3).
To build the wait-for graph, wPerf needs to know 1) how
long a normal thread waits for an I/O thread and 2) how
long an I/O thread waits for a normal thread. The record-
ed IRQ events can only answer the first question.

Since we cannot instrument the internal execution of
a hardware device, we have designed an approximate so-
lution to answer the second question: we assume an I/O
device is waiting during its idle time; we draw an edge
from the device to each normal thread that has issued an
I/O to this device; and we distribute the device’s idle time
to different edges based on how much data each thread
sends to the device, meaning the device is waiting for
new I/Os from these threads in its idle time. To imple-
ment this mechanism, we need to estimate the idle time
of each device.

For a disk, we record its used bandwidth and I/Os per
second (IOPS). We use the bandwidth to estimate the
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disk’s idle time under sequential I/Os and use the IOP-
S to estimate its idle time under random I/Os. The case
about network interface card (NIC) is more complicated
because its capacity is not only limited by the NIC de-
vice, but also by the network infrastructure or the remote
service. Our current implementation uses the NIC’s max-
imal bandwidth as an upper bound to estimate the NIC’s
idle time. If the user has a better knowledge about the
link bandwidth or the capacity of the remote service, w-
Perf can use these values for a better estimation.

Recording information for busy waiting. From the
OS point of view, a thread that is performing busy wait-
ing is in running state but logically it is in blocked state.
Since such waiting and waking up do not involve ker-
nel functions, recording events in kernel cannot capture
them. To make things worse, there is no well-defined in-
terface for such mechanism: some applications use spin-
lock provided by pthread while others may implement
their own mechanisms (e.g., MySQL [51]). Previous s-
tudies have shown that, although such mechanisms are
error prone, they are quite popular [74].

wPerf has no perfect solution to this problem. Instead,
it relies on the developers’ knowledge. wPerf provides
two tracing functions before spin and after spin to de-
velopers, so that they can insert these tracing functions
at appropriate places. In practice, a developer does not
need to trace every of such functions. Instead, he/she can
first find frequent ones with on-CPU analysis tools, and
then instrument these frequent ones.

Removing false wakeup. A false wakeup is a phe-
nomenon that a thread is woken up but finds its condi-
tion to continue is not satisfied, so it has to sleep again.
For example, a ticket selling thread A may broadcast to
threads B and C, claiming it has one ticket. In this case,
only one of B and C can get the ticket and continue. Sup-
pose B gets the ticket: though wPerf can record an event
A waking up C, adding weight to edge C→ A is mislead-
ing, because C’s condition to continue is not satisfied.

Similar as the case for busy waiting, wPerf provides a
tracing function to developers, which can declare a wake-
up event as a false one. The developer can insert it after
a wakeup, together with a condition check. During anal-
ysis, wPerf will remove the pair of wakeup and waiting
events that encapsulate this declaration. Once again, the
developer only needs to identify significant ones.

Recording call stacks. Developers need to tie events
to source code to understand the causes of waiting.
For this purpose, wPerf utilizes perf [61] to sample the
call stacks of the scheduling and IRQ events as men-
tioned above. By comparing the timestamp of a cal-
l stack with the timestamps of recorded events, wPerf
can affiliate a call stack to an edge in the wait-for graph
to help developers understand why each edge occurs.

Note that getting accurate call stacks requires addition-
al supports, such as enabling the sched schedstats fea-
ture in kernel and compiling C/C++ applications with
the -g option. For Java applications, we need to add
the -XX:+PreserveFramePointer option to the JVM and
attach additional modules like perf-map-agent [62] or
async-profiler [6] (wPerf uses perf-map-agent). We are
not aware of supports for Python applications yet.

Minimizing recording overhead. To reduce recording
overhead, we apply two classic optimizations: 1) to re-
duce I/O overhead, the recorder buffers events and flush-
es the buffers to trace files in the background; 2) to avoid
contentions, the recorder creates a buffer and a trace file
for each core. Besides, we meet two challenges.

First, recording busy waiting and false wakeup events
can incur a high overhead in a naive implementation. The
reason is that these events are recorded in the user space,
which means a naive implementation needs to make sys-
tem calls to read the timestamp and the thread ID of an
event: frequent system calls are known to have a high
overhead [66]. To avoid reading timestamps from the
kernel space, we use the virtual dynamic shared objec-
t (vDSO) technique provided by Linux to read current
time in the user space; to avoid reading thread ID from
the kernel space, we observe the pthread library provides
a unique pthread ID (PID) for each thread, which can
be retrieved in the user space. However, recording on-
ly PIDs is problematic, because PID is different from
the thread ID (TID) used in the kernel space. To cre-
ate a match between such two types of IDs, the recorder
records both PID and TID for the first user-space event
from each thread and records only PIDs afterwards.

Second, Linux provides different types of clocks, but
the types supported by vDSO and perf have no overlap,
so we cannot use a single type of clock for all events. To
address this problem, the recorder records two clock val-
ues for each kernel event, one from the vDSO clock and
one from the perf clock. This approach allows us to tie
perf call stacks to kernel events and to order user-space
events and kernel events. However, this approach can-
not create an accurate match between perf call stacks and
user-space events, so we decide not to record call stacks
for user-space events: this is fine since the user need-
s to annotate these events anyway, which means he/she
already knows the source code tied to such events.

4.2 Building the wait-for graph
Based on the information recorded by the recorder, w-
Perf’s analyzer builds the wait-for graph and computes
the weights of edges offline in two steps.

In the first step, the analyzer tries to match wait
and wakeup events. A wait event is one that changes
a thread’s state from “running” or “runnable” to
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1 input: w is a waiting segment.
2 w.start: starting time of this segment
3 w.end: ending time of this segment
4 w.ID: thread ID of this segment
5 w.wakerID: the thread that wakes up this

segment

7 function cascade(w)
8 add weight (w.end-w.start) to edge

w.ID→ w.wakerID
9 find all waiting segments in w.wakerID

that overlap with [w.start w.end)
10 for each of these segments
11 if segment.start < w.start
12 segment.start = w.start
13 if segment.end > w.end
14 segment.end = w.end
15 cascade(segment)

Figure 4: Pseudocode of cascaded re-distribution.

“blocked”; a wakeup event is one that changes a thread’s
state from “blocked” to “runnable”. For each wait event,
the analyzer searches for the next wakeup event that has
the waiting thread’s ID as the argument.

Such matching of wait and wakeup events can nat-
urally break a thread’s time into multiple segments, in
either “running/runnable” or “waiting” state. The ana-
lyzer treats running and runnable segments in the same
way in this step and separates them later. At the end of
this step, the analyzer removes all segments which con-
tain the false wakeup event, by removing the wakeup and
wait events that encapsulate the event.

In the next step, the analyzer builds the wait-for graph
using the cascaded re-distribution algorithm (Figure 3).
As shown in Figure 4, the analyzer performs a recur-
sive algorithm for each waiting segment: it first adds
the length of this segment to the weight of edge w.ID→
w.wakerID (line 8) and then checks whether thread wak-
erID is waiting during the same period of time (line 9).
If so, the analyzer recursively calls the cascade function
for those waiting segments (line 15). Note that the wait-
ing segments in wakerID will be analyzed as well, so
their lengths are counted multiple times in the weight-
s of the corresponding edges. This is what cascaded
re-distribution tries to achieve: nested waiting segments
that cause multiple threads to wait should be emphasized,
because optimizing such segments can automatically re-
duce waiting time of multiple threads.

After building the wait-for graph, the analyzer applies
the algorithms described in Section 3: the analyzer first
applies the Strongly Connected Component (SCC) algo-
rithm to divide the graph into multiple SCCs and finds
SCCs with no outgoing edges: an SCC with no outgoing
edges is either a knot or a sink. If a knot is still complex,
the analyzer repeatedly removes the edge with the low-
est weight, until the knot becomes disconnected. Then
the analyzer identifies knots or sinks again. The analyz-
er repeats this procedure till the developer finds the knot

understandable. Finally, the analyzer checks whether the
remaining threads contain any runnable segments: if so,
the application may benefit from using more CPU cores
or giving higher priority to these threads.

The analyzer incorporates two optimizations:
Parallel graph building. Building the wait-for graph
could be time consuming if the recorded information
contains many events. The analyzer parallelizes the com-
putation of both steps mentioned above. In the first step,
the analyzer parallelizes the matching of events and sep-
aration of segments: this step does not require synchro-
nization because the event list is read-only and the out-
put segment information is local to each analyzer thread.
In the second step, the analyzer parallelizes the cascad-
ed re-distribution for each segment: this phase does not
require synchronization either because the segmentation
information becomes read-only and we can maintain a
local wait-for graph for each analyzer thread and merge
all local graphs when all threads finish.
Merging similar threads. Many applications create a
number of threads to execute similar kinds of tasks. w-
Perf merges such threads into a single vertex to simplify
the graph. To identify similar threads, wPerf’s utilizes
the recorded call stacks: the analyzer merges two threads
if their distributions of call stacks are similar. Note that
in the original wait-for graph, a vertex should never have
a self-loop because a thread should not wait for itself,
but after merging similar threads, a self-loop can happen
if similar threads wait for each other.

4.3 Using wPerf
First, the user needs to run the target application and use
the wPerf recorder to record events. wPerf provides com-
mands to start and stop recording at any time. If the user
observes significant busy waiting or false wakeup during
the experiment, he/she should annotate those events and
re-run the experiment.

Then the user needs to run the analyzer on the recorded
events. The analyzer provides both a graphic output and
a text output to present the bottleneck. In this step, the
user can set up the termination condition of knot refine-
ment. By default, the refinement terminates when the re-
maining graph is either a single vertex or a simple cycle.
In addition, the user can instruct the refinement to termi-
nate when the smallest weight in the remaining graph is
larger than a threshold. The user should set this threshold
based on how much improvement he/she targets, since
the weight of an edge represents the upper bound of the
improvement one may gain by optimizing the edge.

In the third step, the user needs to investigate the knot
to identify optimization opportunities. To facilitate such
investigation, wPerf allows the user to query the call s-
tacks attached to each edge to understand how each edge
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Problem Speedup Known fixes? Involved techniques
HBase [5] Blocking write 2.74× Yes VI, M-SHORT, M-SIM, FW
ZooKeeper [34, 79] Blocking write 4.83× No VI
HDFS [29, 65] Blocking write 2.56× Yes VI, M-SIM
NFS [56] Blocking read 3.9× No VI, M-SIM
BlockGrace [10, 73] Load imbalance 1.44× No M-SHORT, M-SIM
Memcached [47] Lock contention 1.64× Partially VI, M-SIM
MySQL [51] Lock contention 1.42× Yes VI, M-SIM, BW

Table 1: Summary of case studies. (Speedup = ImprovedT hroughput
OriginalT hroughput ; VI: virtual I/O threads; M-SHORT: merging short-

term threads; M-SIM: merging similar threads; BW: tracing busy waiting; FW: tracing false wakeup)

is formed. This step requires the user’s efforts, and our
experience is that for one who is familiar with the target
application, this step usually takes no more than a few
hours. One reason that simplifies this step is that many
edges are caused by a thread waiting for new tasks from
another thread (e.g., Disk→ B in Figure 1), which are
usually not optimizable.

Finally, the user needs to optimize the application.
Similar as most other profiling tools, wPerf does not pro-
vide any help in this step. Based on our experience (Sec-
tion 5), we have summarized a few common problems
and potential solutions, most of which are classic: for
blocking I/Os, one could consider using non-blocking
I/Os or batching I/Os; for load imbalance, one could con-
sider fine-grained task scheduling; for lock contention,
one could consider fine-grained locking. However, since
most of such optimizations will affect the correctness of
the application, the user needs to investigate whether it
is possible and how to apply them. In our case studies,
the required user’s efforts in this step vary significantly
depending on the optimization, ranging from a few min-
utes to change a configuration option to a few weeks to
re-design the application.

Taking the application in Figure 1 as an example, w-
Perf will output a wait-for graph like Figure 2, in which
B and the disk form a knot. The user can then query the
call stacks of edges B→ Disk and Disk→ B; wPerf will
show that B→ disk is caused by the sync call in thread
B and Disk→ B is caused by the disk waiting for new
I/Os from B. The user will realize that Disk→ B is not
optimizable and thus will focus on the sync call.

5 Case Study

To verify the effectiveness of wPerf, we apply wPerf to a
number of open-source applications (Section 5.1): we try
to optimize the events reported by wPerf and see whether
such optimization can lead to improvement in through-
put. We find some problems are already fixed in newer
versions of the applications or online discussions, which
can serve as a direct evidence of wPerf’s accuracy. Ta-

ble 1 summarizes our case studies. Note that we have
avoided complicated optimizations because how to opti-
mize is not the contribution of wPerf, and thus there may
exist better ways to optimize the reported problems.

Furthermore, as a comparison, we run three existing
tools on the same set of applications and present their
reports (Section 5.2). Finally, we report the overhead of
online recording and offline analysis (Section 5.3).

We run all experiments in a cluster with 21 machines:
one machine is equipped with two Intel Xeon E5-2630 8-
core processors (2.4GHz), 64GB of memory, and a 10Gb
NIC; 20 machines are equipped with an Intel Xeon E3-
1231 4-core processor (3.4GHz), 16GB of memory, and
a 1Gb NIC each.

For each experiment, we record events for 90 sec-
onds. We set the analyzer to terminate when the re-
sult graph is a single vertex or a simple cycle or when
the lowest weight of its edges is larger than 20% of the
recording time (i.e., 18). We visualize the wait-for graph
with D3.js [17], and we use solid lines to draw edges
whose weights are larger than 18 and use dashed lines to
draw the other edges. Since D3.js cannot show a self-
loop well, we use “*” to annotate threads with self-loops
whose weights are larger than 18. We record all edge
weights in Section A. wPerf uses a thread ID to repre-
sent each thread, and for readability, we manually check
the call stacks of each thread to find its thread name and
replace the thread ID with the thread name. We set perf
sampling frequency to be 100Hz, which allows perf to
collect sufficient samples with a small overhead.

5.1 Effectiveness of wPerf

HBase. HBase [5] is an open-source implementation
of Bigtable [12]. It provides a key-value like interface to
users and stores data on HDFS. We first test HBase 0.92
with one RegionServer, which runs on HDFS with three
DataNodes. We run a write workload with a key size of
16 bytes and a value size of 1024 bytes.

With the default setting, HBase can achieve a through-
put of 9,564 requests per second (RPS). Figure 5a shows
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Figure 5: Wait-for graphs of HBase. For readability, we
sort edges by their weights and only show the top 40.

the wait-for graph, in which wPerf identifies a significan-
t cycle among HBase Handler threads, HDFS Streamer
threads, the NIC, and HDFS ResponseProcessor thread-
s. This cycle is created for the following reason: the
Handler threads flushes data to the Streamer threads; the
Streamer threads send data to DataNodes through the
NIC; when the NIC receives the acknowledgements from
the DataNodes, it wakes up the ResponseProcessors; and
finally the ResponseProcessors notify the Handlers that
a flushing is complete. The blocking flushing pattern,
i.e., the Handlers must wait for notification of flushing
complete from the ResponseProcessor, is the fundamen-
tal reason to create the cycle. The HBase developers
are aware that blocking flush is inefficient, so they cre-
ate multiple Handlers to flush in parallel, but the default
number of 10 Handlers is too small on a modern server.

We increase the number of Handlers and HBase can
achieve a maximal throughput of 13,568 RPS with 60
Handlers. Figure 5b shows the new wait-for graph, in
which wPerf identifies the Handlers as the main bottle-
neck. Comparing to Figure 5a, the edge weight of Han-
dler→ ResponseProcessor drops from 87.4 to 16.5: this
is because overlapping more Handlers make them spend
more time in runnable state. The setting of Handler count
has been discussed online [27, 28].

In Figure 5b, wPerf identifies a significant self-loop
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Figure 6: Wait-for graphs and throughput of ZooKeeper.

inside Handlers. Such waiting is caused by contentions
among Handlers. We find that HBase 1.28 has incorpo-
rated optimizations to reduce such contentions and our
experiments show that it can improve the throughput to
26,164 RPS. Such results confirm the report of wPerf:
fixing the two bottlenecks reported by wPerf can bring a
total of 2.74× speedup.

ZooKeeper. ZooKeeper [34, 79] is an open-source im-
plementation of Chubby [11]. We evaluate ZooKeeper
3.4.11 with a mixed read-write workload and 1KB key-
value pairs. As shown in Figure 6c, we find a perfor-
mance problem that even adding 0.1% write can signif-
icantly degrade system throughput from 102K RPS to
about 44K RPS. We use wPerf to debug this problem.

As shown in Figure 6a, for the read-only workload,
wPerf identifies NIC as the major bottleneck, which is
reasonable because the NIC’s max bandwidth is 1Gbp-
s: this is almost equal to 102K RPS. For the workload
with 0.1% write (Figure 6b), however, wPerf identifies
the key bottleneck is a knot consisting of the SyncThread
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in ZooKeeper, the disk, and the journaling thread in the
file system. As shown in the knot, the disk spends a lot
of time waiting for the other two, which means the disk’s
bandwidth is highly under-utilized.

We investigate the code of SyncThread. SyncThread
needs to log write requests to disk and perform a block-
ing sync operation, which explains why it needs to wait
for the disk. Sync for every write request is obviously in-
efficient, so ZooKeeper performs a classic batching op-
timization that if there are multiple outstanding requests,
it will perform one sync operation for all of them. In
ZooKeeper, the number of requests to batch is limited
by two parameters: one is a configuration option to lim-
it the total number of outstanding requests in the serv-
er (default value 1,000), which is used to prevent out of
memory problems; the other is a hard-coded 1,000 limit,
which means the SyncThread will not batch more than
1,000 requests. However, we find both limits count both
read and write requests, so if the workload is dominated
by reads, the SyncThread will only batch a small number
of writes for each sync, leading to inefficient disk access.

We try a temporary fix to raise this limit to 10,000,
by modifying both the configuration file and the source
code. As shown in Figure 6c, such optimization can im-
prove ZooKeeper’s throughput by up to 4.83X. However,
a fixed limit may not be a good solution in general: if the
workload contains big requests, a high limit may cause
out of memory problems; if the workload contains small
requests, a low limit is bad for throughput. Therefore,
it may be better to limit the total size of outstanding re-
quests instead of limiting the total number of them.

HDFS NameNode. HDFS [29, 65] is an open-source
implementation of Google File System [23]. It incorpo-
rates many DataNodes to store file data and a NameN-
ode to store system metadata. Since NameNode is well-
known to be a scalability bottleneck [64], we test it with
a synthetic workload [63]: we run MapReduce TeraSort
over HDFS 2.7.3, collect and analyze the RPC traces to
NameNode, and synthesize traces to a larger scale.

With the default setting, NameNode can reach a max-
imal throughput of 3,129 RPCs per second. As shown
in Figure 7, wPerf identifies the bottleneck is a cycle be-
tween Handler threads and the disk. Our investigation
shows that its problem is similar to that of ZooKeeper:
Handler threads need to log requests to the disk and to
improve performance, NameNode batches requests from
all Handlers. Therefore, the number of requests to be
batched is limited by the number of Handlers. The de-
fault setting of 10 Handlers is too small to achieve good
disk performance. By increasing the number of Handler-
s, NameNode can achieve a throughput of about 8,029
RPCs per second with 60 handlers. This problem has
been discussed online [53, 54].
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Figure 7: Wait-for graphs of HDFS NameNode.
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Figure 8: Wait-for graph of running grep over NFS.

NFS. Networked File System (NFS) [56] is a tool to
share files among different clients. We set up an NFS
server 3.2.29 on CloudLab [15] and set up one NFS client
2.7.5 on our cluster. We test its performance by storing
Linux 4.1.6 kernel source code on it and running “grep”.

As shown in Figure 8, wPerf identifies a cycle among
the grep process, the kernel worker threads, and the NIC.
The reason is that grep performs blocking read opera-
tions. As a result, grep needs to wait for data from the
receiver threads, and the sender threads need to wait for
new read requests from grep. This problem can be opti-
mized by either performing reads in parallel or prefetch-
ing data asynchronously. We create two NFS instances,
distribute files into them, and run eight grep processes in
parallel: this can improve the throughput by 3.9×.

BlockGrace. BlockGrace [10, 73] is an in-memory
graph processing system. It follows the classic Bulk Syn-
chronous Parallel (BSP) model [69], in which an algo-
rithm is executed in multiple iterations: in each itera-
tion, the algorithm applies the updates from the last iter-
ation and generates updates for the next iteration. We test
BlockGrace with its own Single-Source Shortest Path
(SSSP) benchmark and with 32 worker threads.

wPerf identifies a cycle between the main thread and
the computation threads. Since the wait-for graph is sim-
ple, consisting of only these two types of threads, we
do not show it here. Our investigation shows the prima-
ry reason is the main thread needs to perform initializa-
tion work for the computation threads, so the computa-
tion threads need to wait for initialization to finish and
the main thread then waits for all computation threads
to finish. To solve this problem, we let the computa-
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tion threads perform initialization in parallel: this can
improve the throughput by 34.19%.

Then we run wPerf again and find the cycle still exists,
but the weight of (computation thread→ main thread) is
reduced. Our investigation shows the secondary reason
is the load imbalance among computation threads. To al-
leviate this problem, we apply fine-grained task schedul-
ing and implement long running computation threads (o-
riginal BlockGrace creates new computation threads in
each iteration): these techniques can further improve the
throughput by 17.82% (44.14% in total).

Memcached. Memcached [47] is a popular in-memory
key-value store. We ran the memaslap benchmark [46]
to test its performance. We configure memaslap to use a
window of 1024 keys per client and set overwrite ratio to
be 0% (we tried different overwrite ratio and it does not
have a significant impact on result).

We first run the experiment on Memcached 1.4.36,
which is the newest version at that moment. It can
achieve a maximal throughput of 354K RPS. wPerf finds
a knot with a single vertex, which is merged from multi-
ple worker threads and has a self-loop. Since this wait-
for graph is simple, we do not show it here. The record-
ed stack trace shows that the waiting is mainly caused
by lock contention on the LRU list and on slab memory
allocator.

To optimize the first lock contention, we change mem-
cached to use spinlock for LRU related operations, be-
cause these operations are usually short. To reduce the
second contention, we deploy two memcached servers on
one machine, each with half number of worker thread-
s. These two optimizations combined can increase the
throughput of Memcached by 35%, to 547K RPS.

We find Memcached 1.5.2 has incorporated an opti-
mization to reduce LRU-related contention, by using a
separate thread to search and mark deleted entries in the
LRU list, so that a worker thread can quickly find an
empty entry. This optimization improves Memcached’s
throughput to about 527K RPS. In this version, we find
our first optimization is not effective anymore, because
LRU-related contention is already reduced; our second
optimization to run two Memcached servers, on the oth-
er hand, can improve the throughput to 580K RPS.

MySQL. MySQL [51] is an open-source transactional
database system widely used in practice.

MySQL has a complicated internal design: it creates
a worker thread for each client, which reads the clien-
t’s commands, executes them, and sends the replies to
the client. Besides, MySQL creates a number of other
threads, including a default number of eight I/O thread-
s to perform asynchronous reads when worker threads
need to read a page from the storage; four page clean-

KworkerHP*

JBDThread

Disk

PurgeCoord

Worker* NIC

IOThread-

CleanerCoord
MasterThread

KworkerBottleneck

(a) MySQL on hard drive (default buffer)

Worker*PurgerCoord

IOThread*

SrvWorker-
Cleaner

NIC

DictThread

LockWait

SrvMaster

Bottleneck

(b) MySQL on RAM-disk (default buffer)

Figure 9: Wait-for graphs of MySQL experiments.

er threads to asynchronously write dirty pages to the s-
torage; four purge threads to purge log space, a health
monitor thread; and a thread to collect statistics. In all
experiments, wPerf merges all worker threads into a sin-
gle vertex and all I/O threads into a single vertex.

We ran the TPC-C benchmark [68] over MySQL.
TPC-C simulates an online transaction processing sys-
tem: it creates a number of warehouses and a number of
clients for each warehouse. The client can browse and
purchase items from a warehouse.

We start by running experiments using the default set-
ting of MySQL and storing data on a hard drive. We
can gain a maximal throughput of 66.133 transaction-
s/sec. wPerf identifies the bottleneck is the disk sub-
system, which is as expected, since hard-drive is well-
known to cause I/O bottlenecks.

Next we create a RAM-disk and set MySQL to store
all data in the RAM-disk. This time we can gain a max-
imal throughput of 2681.815 transactions/sec. wPerf i-
dentifies a knot consisting of the worker thread (it has
a self-loop). The corresponding call stacks recorded by
wPerf show that such wait-for relationship is caused by
contention for multiple reasons: the first is contention
on the locks of page buffers. This problem has been re-
ported in developers forum [52]. We increase MySQL’s
buffer size to 8GB (default buffer size is 128MB) so that
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Figure 10: Changing the termination condition for H-
Base.

all data can be buffered in memory. This time we can
gain a throughput of 3806.075 transactions/sec. The sec-
ond reason is contention on rows. Since previous work-
s [71, 72] have studied how to optimize the concurrency
control of MySQL, we decide not to further optimize.

Effects of termination condtion. The user can termi-
nate the knot refinement when the minimal weight of the
edges in the knot is larger a threshold. We use threshold
18 in previous experiments and Figure 10 uses HBase
as an example to study how this threshold affects wPer-
f. The gap between the top line (i.e., total number of
edges) and the middle line (i.e., number of edges whose
weights are larger than the termination threshold) rep-
resents the number of edges eliminated because of their
small weights. As one can see, only using weights as a
heuristic can eliminate many edges, but even with a large
threshold, there are still 20-30 edges remaining. The gap
between the middle line and the bottom line (i.e., number
of edges wPerf reports as bottleneck) represents the num-
ber of edges eliminated by knot identification, i.e, these
edges have large weights but are outside of the knot. By
combining weights (i.e., cascaded re-distribution) and
knot identification, wPerf can narrow down the search
space to a small number of edges. For other applica-
tions, we observe the similar trend in ZooKeeper, HDFS
NameNode, NFS, and MySQL experiments; for Block-
Grace and Memcached experiments, we do not observe
such trend because their wait-for graphs are simple and
need little refinement.

Summary. By utilizing wPerf, we are able to identify
bottleneck waiting events in a variety of applications and
improve their throughput, which confirms the effective-
ness of wPerf. Though most of the problems we find are
classic ones, they raise some new questions: many prob-
lems are caused by inappropriate setting (e.g., number
of threads, number of outstanding requests, task granu-
larity, etc.) and no fixed setting can work well for all

COZ Flame graph SyncPerf
HBase - Yes -
ZooKeeper - No -
HDFS - No -
NFS No Yes No
BlockGrace-1 Yes Yes No
BlockGrace-2 No Yes No
Memcached Maybe No Yes
MySQL Maybe No *

Table 2: Can other tools identify similar problems? (- the
tool does not support Java; * experiment reports errors.)

workloads, so instead of expecting the users to find the
best setting, it may be better for the application to change
such setting adaptively according to the workload.

5.2 Comparison to existing tools

As a comparison, we test one on-CPU analysis tool
(COZ) and two off-CPU analysis tools (perf and
SyncPerf) on the same set of applications. Since COZ
and SyncPerf currently do not support Java, we run them
only on NFS, BlockGrace, Memcached, and MySQL.
We summarize their reports in Table 2 and record all their
detailed reports in Appendix B to D.

COZ. To compute how much improvement we can
gain by optimizing a certain piece of code, COZ [16] vir-
tually speeds up the target piece of code by keeping its
speed unchanged and slowing down other code when the
target code is running. After the experiment is finished,
COZ adjusts the measured throughput to compensate for
this slowdown.

COZ is designed for on-CPU analysis, and when we
try to use it to analyze off-CPU events, we meet two
problems: first, COZ’s implementation can only virtu-
ally speed up execution on the CPU but cannot virtually
speed up I/O devices and thus it does not report any bot-
tlenecks related to I/Os. For example, in the grep over
NFS experiment (Figure 11) , COZ suggests us to opti-
mize code in kwset.c, which is grep’s internal data struc-
ture, but does not report anything related to I/Os. How-
ever, we believe there is nothing fundamental to preven-
t COZ from implementing virtual speed up for I/O de-
vices. The second problem, however, is fundamental:
the virtual speed up idea does not work well with wait-
ing events, because in many cases, slowing down oth-
er events will automatically slow down a waiting event,
which breaks COZ’s idea to keep the speed of the target
event unchanged. Taking the application in Figure 1 as
an example, suppose we want to investigate how much
improvement we can gain by removing the “sync” cal-
l: following COZ’s idea, we should keep the length of
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“sync” unchanged and slow down the disk write, but this
will automatically increase the length of “sync”. For this
reason, we do not find an accurate way to apply COZ to
off-CPU events.

That said, we find on-CPU and off-CPU analysis
are not completely orthogonal, so COZ can provide
hints to off-CPU analysis in certain cases. For exam-
ple, in the BlockGrace experiment, the first bottleneck
(BlockGrace-1) is caused by the computation thread-
s waiting for the main thread to perform initialization:
while wPerf identifies this bottleneck as a knot con-
sisting of the main thread and the computation threads,
COZ identifies that the initialization code is worth opti-
mizing (e.g., Graph.cpp:97 in Figure 11). Both report-
s can motivate the user to parallelize the initialization
phase. The second bottleneck (BlockGrace-2), howev-
er, is caused by load imbalance among worker threads.
While wPerf identifies a knot again, which motivates us
to improve load balance, COZ reports the code in the
computation threads is worth optimizing (e.g., Sched-
uler.cpp:333 and Graph.cpp:113 in Figure 11), which
is certainly correct but misses the opportunity to im-
prove load balance. Lock contention (e.g., in Mem-
cached and MySQL) is another example: COZ can iden-
tify that execution in a critical section is worth optimiz-
ing (e.g., item.c:463 in Figure 13 and ib0mutex.h:706 in
Figure 14). In this case, an experienced programmer may
guess that reducing contention with fine-grained locking
may also help, but without additional information, such
guess may be inaccurate because long execution in the
critical section can create a bottleneck as well even if
there is almost no contention.

In summary, COZ can identify bottleneck on-CPU
events, which wPerf cannot identify, but when regard-
ing off-CPU events, COZ can at most provide some hints
while wPerf can provide more accurate reports. There-
fore, COZ and wPerf are mainly complementary.

Off-CPU flame graph. perf’s off-CPU flame
graph [58] can output all calls stacks causing wait-
ing and aggregate them based on their lengths. However,
it does not tell which events are important. One can
focus on long events: for HBase (Figure 15), grep
over NFS (Figure 18), and BlockGrace (Figure 19), the
longest events happen to be the same as the ones reported
by wPerf; for the others (Figure 16, Figure 17, Figure 20,
and Figure 21), the longest ones are not the same as the
ones reported by wPerf, and such unimportant but long
waiting are usually caused by threads waiting for some
rare events, such as JVM’s garbage collection threads or
threads waiting for new connections.

SyncPerf. SyncPerf [2] reports long or frequent lock
contentions. For Memcached (Figure 24 items.c), it re-
ports similar problems as wPerf, but for the other system-

Slowdown Trace size Analysis
HBase 2.84% 1.4GB 110.6s
ZooKeeper 3.37% 393.9MB 23.8s
HDFS 3.40% 64.8MB 10.9s
NFS 0.77% 3.6MB 5.1s
BlockGrace 8.04% 110.7MB 14.7s
Memcached 2.43% 2.7GB 160.0s
MySQL 14.64% 7.4GB 271.9s

Table 3: Overhead of wPerf (recording for 90 seconds)

s, it does not: for grep over NFS (Figure 22), SyncPer-
f does not report anything because grep does not have
contention at all; for BlockGrace (Figure 23), SyncPer-
f reports asymmetric contention, but the key problem is
imbalance among threads. We fail to run SyncPerf with
MySQL, and the SyncPerf developers confirmed that it is
probably because MySQL uses some functions SyncPerf
does not fully implement. Note that the SyncPerf paper
reported contentions in MySQL, so our problem may be
caused by different versions of MySQL or glibc, etc. and
if fixed, we believe SyncPerf and wPerf should identify
similar bottlenecks.

5.3 Overhead
Table 3 reports overhead of wPerf. At runtime, w-
Perf incurs an average overhead of 5.1% for recording
events. For BlockGrace and MySQL, the two applica-
tions with relatively large overhead, we further decouple
the sources of their overhead: for BlockGrace, recording
events in kernel and recording call stacks with perf in-
cur 3.1% and 4.9% overhead respectively; for MySQL,
recording events in kernel, recording call stacks with per-
f, and recording events in user space incur 0.5%, 4.2%,
and 9.9% overhead respectively.

As shown in Table 3, the trace size and analysis time
vary significantly depending on the number of waiting
events in the application; the analysis time further de-
pends on the number of nested waiting events. wPer-
f’s parallel analysis helps significantly: for example, for
HBase, with 32 threads, it reduces analysis time from
657.1 seconds to 110.6 seconds.

Besides, wPerf needs users’ efforts to insert tracing
functions for false wakeup and busy waiting events: we
inserted 7 lines of code in HBase to trace false wakeup
events and 12 lines of code in MySQL to trace busy wait-
ing events; we do not modify the other applications since
these two events are not significant in them.

6 Related Work

Performance analysis is a broad area: some work-
s focus on identifying key factors to affect through-
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put [20, 59, 61] and others focus on latency-related fac-
tors [13, 33]; some works focus on a few abnormal
events [7, 43, 45, 78] and others focus on factors that
affect average performance [13, 20, 21, 37, 59, 61]. w-
Perf targets identifying key factors that affect the aver-
age throughput of the application. Therefore, this section
mainly discusses related work in this sub-area.

As mentioned earlier, tools in this sub-area can be cat-
egorized into on-CPU analysis and off-CPU analysis.

On-CPU analysis. For single-threaded applications,
traditional performance profilers measure the time spent
in different call stacks and identify functions that con-
sume most time. Following this idea, a number of per-
formance profilers (e.g., perf [61], DTrace [20], opro-
file [59], yourkit [75], gprof [25, 26], etc.) have been
developed and applied in practice. Two approaches are
widely used: the first is to periodically sample the call s-
tack of the target application and use the number of sam-
ples spent in each function to approximate the time spent
in each function; the second is to instrument the target
application and trace certain function calls [44, 55].

For multi-threaded programs, a number of works try to
identify the critical path of an algorithm [22, 30, 31, 48–
50, 60, 67] and pieces of code that often do not execute in
parallel [35, 38, 39]. COZ [16] can further estimate how
much improvement we can gain by optimizing a certain
piece of code, as discussed in Section 5.2.

Off-CPU analysis. To identify important waiting
events, many existing tools (e.g., perf [61], yourkit [75],
jprofiler [36], etc.) can rank waiting events based on their
aggregated lengths. However, as shown in Section 2,
long waiting events are not necessarily important.

A number of tools design metrics to identify impor-
tant lock contentions [2, 8, 18, 24, 76]. For example,
Freelunch [18] proposes a metric called “critical section
pressure” to identify important locks; SyncProfiler [76]
proposes a graph-based solution to rank critical section-
s; SyncPerf [2] considers both the frequency and length
of contentions. However, they are not able to identify
problems unrelated to contention.

SyncProf [76] and SyncPerf [2] can further identify
the root cause of a problem and make suggestions about
how to fix the problem. Similar as many other tools, w-
Perf does not provide such diagnosis functionality.

7 Conclusion and Future Work

To identify waiting events that limit the application’s
throughput, wPerf uses cascaded re-distribution to com-
pute the local impact of a waiting event and uses wait-for
graph to compute whether such impact can reach other
threads. Our case studies show that wPerf can identi-
fy problems other tools cannot find. In the future, we

plan to extend wPerf to distributed systems, by connect-
ing wait-for graphs from different nodes.
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A Appendix: Edge weights of wait-for
graphs

Table 4 to Table 13 record the edge weights of the wait-
for graphs wPerf generated in each experiment.

B Appendix: Reports of COZ

Figures 11 to 14 show the reports COZ generated for
grep over NFS, BlockGrace, Memcached, and MySQL.
COZ currently does not support Java. Since COZ can test
different lines of code and generate many graphs accord-
ingly, we sort these graphs by their maximal speedup and
show the top six for each application.

C Appendix: Off-CPU flame graphs of
perf

Figures 15-21 show the off-CPU flame graphs perf gen-
erated for all the applications. As one can observe, for H-
Base, grep over NFS, and BlockGrace, the longest events
in the flame graphs are the same as the bottleneck edges
reported by wPerf. For ZooKeeper, HDFS NameNode,
MySQL, and Memcached, the longest events in the flame
graphs are not the same as the bottleneck edges reported
by wPerf.

D Appendix: Reports of SyncPerf

Figures 22-24 show SyncPerf’s reports on grep over N-
FS, BlockGrace, and Memcached. We were not able to
run SyncPerf with MySQL and Java applications.
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SrcThread DstThread Edge Weight
VMThread Handler 1069.02
RespProc(Log) NIC 824.77
ConcurrentGC VMThread 400.01
LogRoller Handler 173.04
RespProc(MemStore) Streamer(MemStore) 96.25
IPC Client(HDFS) NIC 92.62
ParallelGC VMThread 88.69
Streamer(MemStore) CacheFlusher 88.07
Handler RespProc(Log) 87.42
ParallelCMS ConcurrentGC 78.03
Streamer(Log) Handler 71.65
NIC Streamer(Log) 50.36
CacheFlusher Handler 30.95
VMThread RespProc(Log) 25.61
VMThread CacheFlusher 23.04
Streamer(Log) RespProc(Log) 15.88
VMThread ParallelGC 15.74
NIC Streamer(MemStore) 14.68
VMThread IPC Client(HDFS) 14.08
RespProc(Log) Handler 13.71
Streamer(MemStore) NIC 13.69
VMThread Streamer(Log) 13.27
CacheFlusher RespProc(MemStore) 12.57
RespProc(Log) VMThread 9.30
VMThread NIC 7.24
RespProc(Log) Streamer(Log) 6.20
RespProc(MemStore) NIC 5.80
IPC Client(HDFS) VMThread 4.95
CacheFlusher Streamer(MemStore) 4.31
Streamer(Log) LogRoller 3.99
NIC Handler 3.50
Handler Streamer(Log) 3.32
RespProc(Log) IPC Client(HDFS) 2.81
IPC Client(HDFS) RespProc(Log) 2.66
VMThread ConcurrentGC 1.25
CacheFlusher NIC 1.21
IPC Client(HDFS) Handler 1.09
Handler VMThread 0.97
VMThread LogRoller 0.78

Table 4: Edge weights of HBase with 10 handlers
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SrcThread DstThread Edge Weight
VMThread Handler 996.74
RespProc(Log) NIC 596.38
ConcurrentGC VMThread 359.80
LogRoller Handler 230.73
IPC Client(HDFS) NIC 225.56
CacheFlusher Handler 206.35
VMThread ParallelGC 203.68
Streamer(Log) Handler 110.11
RespProc(MemStore) Streamer(MemStore) 93.53
ParallelGC VMThread 86.10
ParallelCMS ConcurrentGC 83.11
Streamer(MemStore) CacheFlusher 82.97
IPC Client(HDFS) VMThread 79.97
RespProc(Log) Handler 75.29
RespProc(Log) VMThread 56.60
LogRoller RespProc(Log) 55.29
Streamer(Log) NIC 46.02
Streamer(Log) RespProc(Log) 45.08
NIC Streamer(Log) 36.94
RespProc(Log) IPC Client(HDFS) 28.67
VMThread CacheFlusher 26.96
RespProc(Log) Streamer(Log) 25.82
Streamer(MemStore) NIC 23.36
IPC Client(HDFS) RespProc(Log) 22.39
IPC Client(HDFS) Handler 21.13
CacheFlusher RespProc(MemStore) 18.94
VMThread LogRoller 17.61
Handler RespProc(Log) 16.54
RespProc(MemStore) NIC 14.09
CacheFlusher NIC 13.24
CacheFlusher LogRoller 10.90
NIC Streamer(MemStore) 10.70
VMThread NIC 8.30
CacheFlusher Streamer(MemStore) 8.16
VMThread IPC Client(HDFS) 6.55
Handler Streamer(Log) 5.70
VMThread RespProc(Log) 5.03
Handler IPC Client(HDFS) 4.84
Streamer(Log) LogRoller 3.45
VMThread ConcurrentGC 3.14
RespProc(Log) RespProc(MemStore) 3.02
Handler VMThread 2.73
NIC Handler 2.40
VMThread Streamer(Log) 2.19

Table 5: Edge weights of HBase with 60 handlers.
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SrcThread DstThread Edge Weight
ParallelGC ParallelGC 2463.49
VMThread SyncThread 416.98
ProcessThread NIOServerCxn 291.52
VMThread NIOServerCxn 202.48
SyncThread ProcessThread 199.81
VMThread ProcessThread 177.22
NIOServerCxn NIC 110.86
ParallelGC VMThread 88.92
NIOServerCxn SyncThread 18.72
CompilerThread NIOServerCxn 15.03
CompilerThread SyncThread 14.98
NIC SyncThread 4.30
VMThread ParallelGC 3.31
NIC NIOServerCxn 3.04
NIOServerCxn VMThread 2.01
SyncThread VMThread 1.07
SyncThread NIOServerCxn 1.05
ProcessThread VMThread 0.87
NIOServerCxn ProcessThread 0.26
ProcessThread SyncThread 0.02

Table 6: Edge weights of ZooKeeper with readonly workload.

SrcThread DstThread Edge Weight
ParallelGC ParallelGC 2548.91
JBDThread Disk 767.39
SyncThread JBDThread 721.92
NIOServerCxn SyncThread 561.17
VMThread SyncThread 369.92
SyncThread Disk 272.87
ProcessThread NIOServerCxn 262.45
VMThread NIOServerCxn 241.97
VMThread ProcessThread 199.60
ParallelGC VMThread 91.70
Disk JBDThread 60.97
NIC SyncThread 44.56
JBDThread SyncThread 43.09
Disk SyncThread 21.68
CompilerThread SyncThread 20.26
CompilerThread NIOServerCxn 13.48
CompilerThread ProcessThread 8.31
VMThread ParallelGC 3.13
SyncThread VMThread 2.79
NIOServerCxn VMThread 1.36
ProcessThread VMThread 0.66
NIOServerCxn ProcessThread 0.34
SyncThread NIOServerCxn 0.26
SyncThread ProcessThread 0.05
VMPeriodicThread Disk 0.03
ProcessThread SyncThread 0.02

Table 7: Edge weights of ZooKeeper with 0.1% write workload.
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SrcThread DstThread Edge Weight
Handler Handler 4516.08
ParallelGC ParallelGC 2507.06
VMThread Handler 206.31
SocketReader Handler 133.39
BlockReportProc Handler 108.25
Handler Disk 100.64
NIC Handler 89.58
ParallelGC VMThread 89.40
Disk Handler 81.78
JBDThread Handler 78.97
VMThread SocketReader 49.32
VMThread VMThread1 11.17
JBDThread Disk 9.38
VMThread BlockReportProc 7.07
JBDThread BlockReportProc 4.94
VMThread ParallelGC 2.43
Handler BlockReportProc 0.89
Disk JBDThread 0.76
Handler VMThread 0.25
SocketReader VMThread 0.24
BlockReportProc SocketReader 0.11
BlockReportProc VMThread 0.11
Kworker Disk 0.07
Handler SocketReader 0.02
VMThread1 VMThread 0.01
Disk Kworker 0.01

Table 8: Edge weights of HDFS NameNode.

SrcThread DstThread Edge Weight
KworkerHP(Recv) NIC 587.24
Kworker(Recv) KworkerHP(Recv) 385.96
Grep Kworker(Recv) 261.49
Grep KworkerHP(Recv) 112.74
Kworker1(TTY) Grep 90.61
Kworker(Send) Grep 89.07
Kworker2(TTY) Grep 87.77
NIC Kworker(Send) 61.27
NIC Grep 22.77
Kworker3(TTY) Grep 19.11
NIC Kworker(Recv) 5.13
NIC KworkerHP(Send) 0.30
KworkerHP(Send) Grep 0.10
NIC KworkerHP(Recv) 0.02
KworkerHP(Send) Kworker(Send) 0.02

Table 9: Edge weights of NFS client.

SrcThread DstThread Edge Weight
Worker Main 64.99
Main Worker 301.99

Table 10: Edge weights of BlockGrace with the SSSP workload.

22



SrcThread DstThread Edge Weight
Worker Worker 3.85
NIC Worker 88.25

Table 11: Edge weights of Memcached.

SrcThread DstThread Edge Weight
KworkerHP KworkerHP 1033.50
JBDThread Disk 719.38
PurgeCoord Worker 330.61
Worker Worker 279.16
NIC Worker 89.90
Worker IOThread 78.83
CleanerCoord JBDThread 68.66
Worker JBDThread 64.45
Disk KworkerHP 62.80
KworkerHP Disk 41.65
MasterThread IOThread 31.84
Disk JBDThread 16.19
MasterThread JBDThread 14.75
IOThread CleanerCoord 13.62
JBDThread Worker 9.51
CleanerCoord Disk 8.46
JBDThread MasterThread 7.41
IOThread IOThread 7.02
MasterThread Worker 6.34
JBDThread CleanerCoord 5.52
IOThread Worker 4.49
Worker NIC 3.69
IOThread MasterThread 2.98
CleanerCoord Worker 2.33
Worker MasterThread 1.73
Kworker Disk 1.14
Worker Disk 0.67
MasterThread CleanerCoord 0.53
CleanerCoord MasterThread 0.47
MasterThread Disk 0.44
Disk CleanerCoord 0.19
Disk Worker 0.09
JBDThread Kworker 0.89
Worker CleanerCoord 0.08
Disk Kworker 0.03
Disk MasterThread 0.01

Table 12: Edge weights of MySQL on disk.
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SrcThread DstThread Edge Weight
Worker Worker 1378.99
PurgerCoord Worker 228.30
IOThread IOThread 106.43
SrvWorker PurgerCoord 83.96
Cleaner Worker 79.87
NIC Worker 75.07
IOThread Cleaner 67.85
IOThread Worker 53.80
DictThread Worker 35.01
PurgerCoord IOThread 17.37
Worker IOThread 16.70
Worker NIC 14.49
SrvWorker IOThread 11.59
LockWait Worker 11.39
SrvWorker SrvWorker 11.21
PurgerCoord SrvWorker 6.73
Cleaner IOThread 5.41
SrvWorker Worker 5.09
IOThread PurgerCoord 0.92
Worker SrvWorker 0.92
SrvMaster Worker 0.86
Worker Cleaner 0.71
PurgerCoord Cleaner 0.66
Cleaner SrvWorker 0.42
Worker PurgerCoord 0.36
Cleaner PurgerCoord 0.34
SrvWorker Cleaner 0.08
Cleaner SrvMaster 0.07
SrvMaster Cleaner 0.05
DictThread PurgerCoord 0.03
PurgerCoord DictThread 0.02
Worker DictThread 0.01
Cleaner DictThread 0.01
DictThread SrvWorker 0.01
Worker SrvMaster 0.01
IOThread DictThread 0.01
SrvWorker DictThread 0.00

Table 13: Edge weights of MySQL in memory (128MB buffer).
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Figure 11: COZ output for grep over NFS

Figure 12: COZ output for BlockGrace

Figure 13: COZ output for memcached
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Figure 14: COZ output for MySQL
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Figure 17: Off-CPU flame graph of HDFS NameNode (10 handlers).
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Figure 18: Off-CPU flame graph of grep over NFS.
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Figure 19: Off-CPU flame graph of BlockGrace.
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Figure 20: Off-CPU flame graph of Memcached.
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Figure 21: Off-CPU flame graph of MySQL.

==============================
HIGH CONFLICT , HIGH FREQUENCY
==============================
Total found : 0

==============================
HIGH CONFLICT , LOW FREQUENCY
==============================
Total found : 0

==============================
LOW CONFLICT , HIGH FREQUENCY
==============================
Total found : 0

Figure 22: SyncPerf output for grep over NFS.
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==============================
HIGH CONFLICT , HIGH FREQUENCY
==============================
Total found : 0

==============================
HIGH CONFLICT , LOW FREQUENCY
==============================
Total found : 5
No.1
-------
Conflict Rate: 19.6286
Acquisition Frequency: 0.127034
Line Numbers: 3
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171
Driver.cpp:494 main.cpp:171
No.2
-------
Conflict Rate: 11.4058
Acquisition Frequency: 0.127034
Line Numbers: 3
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171
Driver.cpp:494 main.cpp:171
No.3
-------
Conflict Rate: 8.22281
Acquisition Frequency: 0.127034
Line Numbers: 3
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171
Driver.cpp:494 main.cpp:171
No.4
-------
Conflict Rate: 8.22281
Acquisition Frequency: 0.127034
Line Numbers: 3
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171
Driver.cpp:494 main.cpp:171
No.5
-------
Conflict Rate: 7.42706
Acquisition Frequency: 0.127034
Line Numbers: 3
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171
Driver.cpp:494 main.cpp:171

==============================
LOW CONFLICT , HIGH FREQUENCY
==============================
Total found : 0

======================
Asymmetric Locks found : 3
========================
Driver.cpp:494 main.cpp:171
Driver.cpp:86
TaskBase.cpp:46 Scheduler.h:114 Driver.cpp:472 main.cpp:171

Figure 23: SyncPerf output for BlockGrace.
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==============================
HIGH CONFLICT , HIGH FREQUENCY
==============================
Total found : 0

==============================
HIGH CONFLICT , LOW FREQUENCY
==============================
Total found : 1
No.1
-------
Conflict Rate: 40
Acquisition Frequency: 3.17436e-05
Line Numbers: 2
thread.c:111,memcached.c:6567,
thread.c:119,thread.c:351,??:0,

==============================
LOW CONFLICT , HIGH FREQUENCY
==============================
Total found : 119
No.1
-------
Conflict Rate: 4.61315
Acquisition Frequency: 685.809
Line Numbers: 4
items.c:995,items.c:212,items.c:285,memcached.c:3499,memcached.c:3993,
items.c:392,items.c:448,memcached.c:2724,thread.c:107,memcached.c:1116,
items.c:428,items.c:490,items.c:546,memcached.c:2722,thread.c:107,
No.2
-------
Conflict Rate: 0.427492
Acquisition Frequency: 457.228
Line Numbers: 8
logger.c:544,string3.h:90,
assoc.c:73,memcached.c:399,
logger.c:450,??:0,
memcached.c:522,memcached.c:5266,memcached.c:5286,memcached.c:6624,
memcached.c:602,memcached.c:5266,memcached.c:5286,memcached.c:6624,
items.c:438,memcached.c:2724,thread.c:107,memcached.c:1116,memcached.c:4844,
items.c:458,items.c:546,memcached.c:2722,thread.c:107,memcached.c:1116,
memcached.c:706,memcached.c:5032,
No.3
-------
Conflict Rate: 0.893449
Acquisition Frequency: 457.204
Line Numbers: 4
slabs.c:528 items.c:189 items.c:285 memcached.c:3499 memcached.c:3993,
slabs.c:535 memcached.c:2733 thread.c:107 memcached.c:1116 memcached.c:4844,

Figure 24: SyncPerf output for Memcached. The report contains many events and we only show the top 3.
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