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Abstract

Dynamic program analysis can predict data races knowable
from an observed execution, but existing predictive analyses
either miss races or cannot analyze full program executions.
This paper presents Vindicator, a novel, sound (no false races)
predictive approach that finds more data races than existing
predictive approaches. Vindicator achieves high coverage
by using a new, efficient analysis that finds all possible pre-
dictable races but may detect false races. Vindicator ensures
soundness using a novel algorithm that checks each potential
race to determine whether it is a true predictable race. An
evaluation using large Java programs shows that Vindicator
finds hard-to-detect predictable races that existing sound
predictive analyses miss, at a comparable performance cost.
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1 Introduction

As parallel software becomes increasingly pervasive, data
races represent a growing threat to system reliability. A
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shared-memory program has a data race if it is possible
for two conflicting memory accesses (accesses, at least one
of which is a write, to the same memory location by differ-
ent threads) to execute consecutively (with no interleaving
program operations). Data races lead to fatal crashes, data
corruption, and other errors nondeterministically [9, 17, 19,
31, 41, 43, 48, 51, 63, 67, 77, 82, 88]. Modern shared-memory
programming languages including C++ and Java provide
undefined or ill-defined semantics for executions with data
races [2, 10–13, 54, 82].

This paper focuses on detecting data races using dynamic
program analysis, which observes a single execution’s mem-
ory accesses and synchronization operations. Dynamic anal-
ysis can be sound, meaning that it reports only true races.1
Soundness is an essential property because each reported
race—whether true or false—takes substantial time for devel-
opers to investigate [4, 30, 35, 55, 63].
The most prevalent dynamic analysis for detecting data

races is happens-before (HB) analysis, which soundly detects
conflicting accesses unordered by the HB relation, a partial
order that is the union of program and synchronization or-
der [30, 46, 69, 71]. HB analysis does not detect all data races
that are predictable: data races that, based on the observed
execution alone, can definitely occur in some execution.

Sound predictive analysis detects more races than HB with-
out reporting false races [20, 38, 39, 44, 50, 74, 79, 86]. Most
existing predictive analyses cannot scale beyond analyzing
bounded windows of execution, thus missing predictable
races whose accesses are “far apart” in an observed execution
(Section 7). An outlier is Kini et al.’s weak-causally-precedes
(WCP) analysis, which computes the WCP relation efficiently
for full program executions [44]. However, WCP analysis
inherently misses predictable races.

Our approach. This paper introduces an approach called
Vindicator that soundly predicts more races thanWCP analy-
sis and scales to full program executions. Vindicator consists
of two novel components: (1) doesn’t-commute (DC) analysis,
an unsound analysis that detects DC-races, which include all

1In this paper, an analysis is sound if it reports no false races, which follows
the predictive data race detection literature (e.g., [38, 44, 86]).
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predictable races2 but may also include false races, and (2)
VindicateRace, an algorithm that analyzes every DC-race
to determine whether it is a true predictable race.

In our experiments, an implementation of Vindicator finds
all predictable races in full executions of large Java programs.
Vindicator finds hard-to-detect races and several statically
distinct predictable races thatWCP analysis cannot find, with
comparable run-time overhead. Vindicator thus advances
the state of the art in sound predictive race detection.

2 Background and Motivation

This section defines an execution trace and the properties
that must hold to correctly reorder a trace, as well as other
relevant definitions. We then describe predictive relations
from prior work and show their limitations.

2.1 Execution Trace

An execution trace tr is a totally ordered list of events; tr
represents a multithreaded execution without loss of gener-
ality.3 We say e <tr e ′ if e occurs before e ′ in tr , and e ≤tr e ′
if e <tr e ′ ∨ e = e ′. An event e is one of wr(x), rd(x), acq(m),
or rel(m), where x is a variable and m is a lock.

We define a helper function thr (e ) that returns the thread
identifier that executed event e . Function A(r ) returns the
acquire event that starts the critical section ended by release
event r , and R(a) returns the release event that ends the
critical section started by acquire event a. Function CS(r )
returns the set of events in the critical section ended by
release event r , including r and A(r ). That is, CS(r ) ≡ {e |
thr (e ) = thr (r ) ∧ A(r ) ≤tr e ≤tr r }.
Events e and e ′ are conflicting, denoted e ≍ e ′, if one is

a write event and the other is a read or write event to the
same variable and thr (e ) , thr (e ′).
Program-order (PO) is a relation that orders events exe-

cuted by the same thread. For two events e and e ′, e ≺PO e ′

if e <tr e ′ ∧ thr (e ) = thr (e ′).

Examples. Figures 1(a) and 2(a) show example execution
traces, with<tr order from top to bottom and different threads
in different columns. (The reader can ignore the arrows and
Figures 1(b) and 2(b) for now.)

2.2 Reordered Execution Trace

Sound predictive race detection analyzes a trace tr and de-
tects data races that occur in some other, unobserved execu-
tion. A correctly reordered trace tr ′ is any trace that must be
feasible because the observed trace tr executed. Reasoning
about feasible reordered traces can be tricky. Figures 1(b)

2A caveat is that our definition of predictable race is slightly more strict
than needed (Section 2.2).
3The total order <tr is a linearization of events in a sequentially consis-
tent (SC) execution. We can safely assume SC, at least until the first race,
because language memory models typically ensure SC for data-race-free
executions [2, 11, 54].

Thread 1 Thread 2
wr(x)
acq(m)
wr(z)
rel(m)

acq(m)
rd(y)
rel(m)
rd(x)

(a) HB analysis detects no race

HB

Thread 1 Thread 2
acq(m)
rd(y)
rel(m)

wr(x)
rd(x)

(b) Correct reordering of (a)

Figure 1. The example execution in (a) has no HB-race (i.e.,
wr(x) ≺HB rd(x)), but it has a predictable race, as the reordered
execution in (b) demonstrates.

Thread 1 Thread 2 Thread 3
wr(x)
acq(o)
wr(y)
rel(o)

acq(o)
rd(y)
rel(o)
acq(m)
rel(m)

acq(m)
rel(m)
rd(x)

(a) WCP analysis detects no race

WCP

HB

Thread 1 Thread 2 Thread 3
acq(m)
rel(m)

wr(x)
rd(x)

(b) Correct reordering of (a)

Figure 2. The example execution in (a) has no WCP-race
(i.e., wr(x) ≺WCP rd(x)), but it has a predictable race, as the
reordered execution in (b) demonstrates.

and 2(b) show correct reorderings of Figures 1(a) and 2(a),
respectively. However, suppose in Figure 1(a) we change
Thread 1’s wr(z) to wr(y). Then Figure 1(b) would no longer
be a correct reordering because, in the original static pro-
gram, whether rd(x) occurs may depend on the value that
rd(y) reads. In addition to guaranteeing that read events see
the same written values, a correctly reordered trace must
respect program order and lock semantics:

Definition 2.1 (Correct reordering). A trace tr ′ is a correct
reordering of tr if tr ′ contains only events in tr and the
following properties hold:
Program-order (PO) rule: Two PO-ordered events must exe-
cute in the same order in tr ′ as in tr unless the second event
is not in tr ′. That is, e ≺PO e ′ =⇒ (e <tr′ e

′ ∨ e ′ < tr ′).
Conflicting accesses (CA) rule: Two conflicting events must
execute in the same order in tr ′ as in tr unless the second
event is not in tr ′. That is, (e <tr e ′ ∧ e ≍ e ′) =⇒ (e <tr′

e ′ ∨ e ′ < tr ′).
Lock semantics (LS) rule: Critical sections on the same lock
cannot overlap. That is, if a1 and a2 are acquire events on
the same lock, a1 <tr′ a2 =⇒ R(a1) <tr′ a2.
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Note that the CA rule, which prohibits reordering all pairs
of conflicting accesses, is overly strict: it disallows some
reordered traces in which every read has the same last write
as in tr . For example, given rd(x) <tr wr(x), the CA rule
disallows a tr ′ that contains wr(x) but not rd(x), although
such a reordered trace is not necessarily invalid. However,
we do not know how to encode a less-restrictive CA rule
in a partial order such as this paper’s DC relation (or prior
work’s CP andWCP relations [44, 86]), e.g., how to to encode
that tr ′ can reorder a read–write conflict only if the read is
not in the reordered execution.
Note also that the PO and CA rules constrain reordering

based on ordering in tr , while the LS rule constrains tr ′

directly. This distinction is relevant to this paper’s approach.

Definition 2.2 (Predictable race). An execution trace tr has
a predictable race if it has two conflicting events e1 and e2
(e1 ≍ e2) that in some correctly reordered trace tr ′ are con-
secutive (e1 <tr′ e2 ∧ ∄e | e1 <tr′ e <tr′ e2).

Figures 1(b) and 2(b) demonstrate that Figures 1(a) and 2(a),
respectively, each have a predictable race.

Definition 2.3 (Soundness). A relation, analysis, or approach
is sound if it finds no race for every execution trace tr that
has no predictable race.

Definition 2.4 (Completeness). A relation, analysis, or ap-
proach is complete if it finds a race for every execution trace
tr that has a predictable race.

Note that completeness means detecting all predictable races
knowable from an observed execution trace, not all of a
program’s data races.
These definitions of soundness and completeness, which

follow the predictive data race detection literature (e.g., [38,
44, 86]), are swapped compared with most work on static
and dynamic (non-predictive) race detection (cf. Section 7).

2.3 Sound Predictive Relations

Prior work introduces relations on events that are predictive
because unordered conflicting accesses indicate a predictable
race. The following presentation of predictive relations is
similar to prior work’s [44, 86].

Definition 2.5 (Happens-before). Given a trace tr , ≺HB is
the smallest relation that satisfies the following properties:
• Two events are ordered by HB if they are ordered by PO.
That is, e ≺HB e

′ if e ≺PO e ′.
• Release and acquire events on the same lock are ordered
by HB (a.k.a. synchronization order). That is, r ≺HB a if r
and a are release and acquire events, respectively, on the
same lock and r <tr a.
• HB is transitively closed. That is, e ≺HB e

′ if ∃e ′′ | e ≺HB

e ′′ ∧ e ′′ ≺HB e
′.

An execution trace has an HB-race if it has two conflicting
events that are unordered by the strict partial order HB.

Although the literature usually does not classify HB-race
detection as “predictive,” we (and others [44]) consider HB
to be predictive because it predicts consecutive conflicting
events in some reordered trace.

HB is incomplete: it misses predictable races. Figure 1(a)’s
execution has no HB-races (wr(x) ≺HB rd(x)), but the execu-
tion has a predictable race (as Figure 1(b) demonstrates).

Kini et al.’sweak-causally-precedes (WCP) relation is weaker
than HB and thus predicts more races than HB. (WCP is
likewise weaker than prior work’s causally-precedes (CP)
relation [73, 86] and thus predicts more races than CP.)

Definition 2.6 (Weak-causally-precedes). Given a trace tr ,
≺WCP is the smallest relation that satisfies the following prop-
erties:
(a) If two critical sections on the same lock contain conflict-

ing events, then the first critical section is ordered by
WCP to the second conflicting event. That is, r1 ≺WCP e2
if r1 and r2 are release events on the same lock, r1 <tr r2,
e1 ∈ CS(r1), e2 ∈ CS(r2), and e1 ≍ e2.

(b) Release events on the same lock are ordered by WCP if
their critical sections contain WCP-ordered events. Be-
cause of the next rule, this rule can be expressed simply
as follows: r1 ≺WCP r2 if r1 and r2 are release events on
the same lock and A(r1) ≺WCP r2.

(c) WCP is closed under left and right composition with HB.
That is, e ≺WCP e ′ if ∃e ′′ | e ≺HB e ′′ ≺WCP e ′ ∨ e ≺WCP

e ′′ ≺HB e
′.

An execution trace has aWCP-race if it has two conflicting
events unordered by the strict partial order ≺WCP∪≺PO. The
execution in Figure 1(a) has a WCP-race on wr(x) and rd(x).

WCP is theweakest known partial order that is also sound.4
Furthermore, WCP can be computed with a dynamic analysis
that scales to whole execution traces [44]. However, WCP
is incomplete. Figures 2(a) and 3(a) each show an execution
that has no WCP-race but has a predictable race, as demon-
strated by Figures 2(b) and 3(b), respectively.5 Intuitively,
WCP is incomplete because it composes with synchroniza-
tion order (i.e., ordering between critical sections on the same
lock; Definition 2.5). For example, in Figure 2(a), WCP orders
Thread 1’s rel(o) before Thread 3’s acq(m), but these opera-
tions can be reordered in a correctly reordered execution, as
Figure 2(b) shows.

WCP’s incompleteness leads to missing predictable races
not only in theory but also in practice. This paper’s goal is

4Technically, an execution with a WCP-race has a predictable race or a
predictable deadlock [44].
5Although the arrows in Figure 3(a) show DC ordering (described later),
for this execution DC ordering is the same as WCP ordering established
by WCP rules (a) and (b). In the execution, wr(x) ≺WCP rd(x) because WCP
composes with HB, which the figure does not show.
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Thread 1 Thread 2 Thread 3 Thread 4 Thread 5
acq(m)
sync(r)

acq(l)
sync(v)
acq(n)
sync(r)
rel(n)
rel(l)

sync(r)
wr(x)
rel(m)

acq(n)
sync(q)
sync(v)
rel(n)

acq(m)
sync(p)
sync(q)
rel(m)

acq(l)
sync(p)
rel(l)
rd(x)

(a) Example execution. The arrows represent DC ordering (ex-
cluding PO ordering).

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5
acq(n)
sync(q)

acq(m)
sync(p)
sync(q)
rel(m)

acq(m)
sync(r)

acq(l)
sync(v)

sync(v)
rel(n)

acq(n)
sync(r)
rel(n)
rel(l)

sync(r)
acq(l)
sync(p)
rel(l)

wr(x)
rd(x)

(b) Correctly reordered trace of (a) demonstrating a predictable
race.

Figure 3. The execution in (a) has a predictable race and a DC-race (wr(x) ⊀DC rd(x)) but no WCP-race (wr(x) ≺WCP rd(x)).
sync(o) is an abbreviation for the sequence acq(o); rd(oVar); wr(oVar); rel(o).

to report the predictable races that WCP misses by detecting
all predictable races in unbounded executions.

3 Vindicator Overview

This paper presents a novel approach called Vindicator for
detecting all predictable races from an observed program exe-
cution. Vindicator consists of two main components, doesn’t-
commute (DC) analysis and the VindicateRace algorithm.

Section 4 introduces DC analysis, which tracks DC, a com-
plete but unsound predictive relation. DC achieves complete-
ness by forgoing WCP’s composition with HB, effectively
avoiding artificial constraints on the order of critical sections
in a reordered trace. DC analysis identifies DC-races, which
are potential predictable races (i.e., may be false races), and
computes a constraint graph of executed events; the graph’s
transitive closure corresponds to DC ordering.
Section 5 presents VindicateRace, an algorithm for de-

termining whether a DC-race is a true predictable race. The
algorithm takes as input a single DC-race and constraint
graph. VindicateRace adds additional constraints that are
necessary for reordering critical sections to expose a po-
tential predictable race. VindicateRace ensures soundness
by constructing, for each reported predictable race, a cor-
rectly reordered trace that executes the conflicting accesses
consecutively.

4 Doesn’t-Commute Relation and Analysis

Doesn’t-commute (DC) is a new relation that is unsound and
complete, detecting all predictable races but also potential

false races. Although DC is unsound, it detects few, if any,
false races in practice.
Definition 4.1 (Doesn’t-commute). Given a trace tr , ≺DC is
the smallest relation that satisfies the following properties:
(a) If two critical sections on the same lock contain conflict-

ing events, then the first critical section is ordered by
DC to the second conflicting event. That is, r1 ≺DC e2 if
r1 and r2 are release events on the same lock, r1 <tr r2,
e1 ∈ CS(r1), e2 ∈ CS(r2), and e1 ≍ e2.

(b) Release events on the same lock are ordered by DC if
their critical sections contain DC-ordered events. Be-
cause of the next two rules, this rule can be expressed
simply as follows: r1 ≺DC r2 if r1 and r2 are release events
on the same lock and A(r1) ≺DC r2.

(c) Two events are ordered by DC if they are ordered by PO.
That is, e ≺DC e

′ if e ≺PO e ′.
(d) DC is transitively closed. That is, e ≺DC e

′ if ∃e ′′ | e ≺DC

e ′′ ∧ e ′′ ≺DC e
′.

Note that DC’s rules (a) and (b) are identical toWCP’s rules (a)
and (b), but with ≺WCP replaced by ≺DC. DC differs fromWCP
by composing only with PO, not HB.

An execution trace has a DC-race if it has two conflicting
events that are unordered by DC. The strict partial order ≺DC

is strictly weaker than ≺WCP∪≺PO, and as a result, DC pre-
dicts races that WCP does not. For example, the executions
in Figures 1(a), 2(a), and 3(a) contain DC-races. In fact, DC is
complete (as defined in Definition 2.4).
Theorem 1 (DC completeness). If a trace tr has a predictable
race (according to Definition 2.2), then tr has a DC-race.
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We prove this theorem in Appendix B.
However, DC is unsound: a DC-race may not be a true

predictable race. Figures 4(a) and 4(b) show executions that
each have conflicting events on x that are unordered by DC
but cannot be consecutive in any correctly reordered trace.

DC analysis. We introduce DC analysis, a dynamic analysis
that tracks the DC relation at every event and detects DC-
races. The analysis, which uses vector clocks [59] to track
the DC partial order, is analogous to prior work’s WCP anal-
ysis [44]. The main difference with WCP analysis is that DC
analysis does not track the HB relation and does not compose
HB with DC, resulting in fewer orderings among events and
thus increased race coverage. Like WCP analysis [44], DC
analysis’s running time is linear in trace length, and its space
complexity is linear in the worst case. Appendix A presents
DC analysis in detail.

5 Vindicating Predictable Races

Algorithm 1 presents VindicateRace, an algorithm that de-
termines whether a DC-race is a true predictable race. Vin-
dicateRace takes as input a single DC-race and a constraint
graph with nodes that are executed events and edges that
correspond to DC order. Intuitively, the constraint graph’s
edges serve as constraints on a reordered trace, but the ini-
tial constraints (i.e., DC order) are not sufficient to satisfy
the rules of a correctly reordered trace that exposes the
input race. VindicateRace thus adds additional needed con-
straints, both on the order of the DC-race’s events and on
critical sections of the same lock. Ultimately, either the result-
ing constraint graph has a cycle that implies the DC-race is a
false race; VindicateRace constructs a correctly reordered
trace tr ′ in which the DC-race’s events are consecutive; or
VindicateRace fails to construct a correctly reordered trace
from the constraint graph, which is inconclusive because the
construction uses a greedy algorithm.
The rest of this section first defines the constraint graph

and then explains VindicateRace and its helper procedures.

5.1 The Constraint Graph

The constraint graphG is a directed graph inwhich the nodes
are the events in tr . G’s edges, e.g., (e, e ′) ∈ G, intuitively
represent constraints on any reordered trace. We use the
notation e {G e ′ to indicate that e ′ is reachable from e inG:

e {G e ′ ≡ (e, e ′) ∈ G ∨ ∃e ′′ | e {G e ′′ ∧ e ′′ {G e ′

When Vindicator calls VindicateRace,G initially has edges
that represent DC ordering among events. That is, initially
the following property holds:

∀e, e ′ ∈ tr
(
e ≺DC e

′ ⇐⇒ e {G e ′
)

Algorithm 1 Check if DC-race is a true predictable race
An execution trace is an ordered list of events: ⟨e, . . . , e ′⟩.
The operator ⊕ concatenates two traces:
⟨e, . . . , e ′⟩ ⊕ ⟨e ′′, . . . , e ′′′⟩ ≡ ⟨e, . . . , e ′, e ′′, . . . , e ′′′⟩.
1: procedure VindicateRace(G, e1, e2)
2: G ← AddConstraints(G, e1, e2)
3: if G = ∅ then
4: return No predictable race
5: else

6: tr ′ ← ConstructReorderedTrace(G, e1, e2)
7: if tr ′ , ⟨ ⟩ then ▷ Check for non-empty trace
8: return Predictable race witnessed by tr ′

9: else

10: return Don’t know

11: procedure AddConstraints(G, e1, e2)
12: C ← {(src, e2) | (src, e1) ∈ G} ∪ {(src, e1) | (src, e2) ∈ G}
13: G ← G ∪C
14: do

15: foreach (src, snk) ∈ C do

16: foreach

(a, r ) | a is an acq ∧ a {G src ∧
r is a rel ∧ snk {G r ∧
L(a) = L(r )

do

17: if

(A(r ) {G e1 ∨A(r ) {G e2) ∧
(a {G e1 ∨ a {G e2)

then

18: C ← C ∪ {(R (a),A(r ))}
19: G ← G ∪ {(R (a),A(r ))}

20: if ∃e | (e {G e1 ∨ e {G e2) ∧ e {G e then
21: return ∅ ▷ Cycle detected; no predictable race
22: while C has changed
23: return G

24: procedure ConstructReorderedTrace(G, e1, e2)
25: R ← {e | e {G e1 ∨ e {G e2} ▷ Reachable events
26: do

27: tr ′ ← AttemptToConstructTrace(G,R, e1, e2)
28: if tr ′ = ⟨r ⟩ then ▷ tr ′ contains needed (release) event?
29: R ← R ∪ {r } ∪ {e | e {G r }

30: while R has changed
31: return tr ′

32: procedure AttemptToConstructTrace(G,R, e1, e2)
33: tr ′ ← ⟨e1, e2⟩
34: while R \ tr ′ , ∅ do
35: next ← {e ∈ R \ tr ′ | (∄e ′ | (e, e ′) ∈ G ∧ e ′ ∈ R \ tr ′)}
36: legal ← {e ∈ next | ⟨e⟩ ⊕ tr ′ satisfies LS}
37: if legal = ∅ then

38: if

∃r | (∃e ∈ next | e ∈ CS(r ) ∧
r < R ∧ ⟨r ⟩ ⊕ tr ′ satisfies LS) then

39: return ⟨r ⟩ ▷ Return missing release
40: return ⟨ ⟩ ▷ Failed to construct trace
41: else

▷ Select latest legal event in tr order
42: let e ∈ legal s.t. ∄e ′ ∈ legal | e <tr e ′
43: tr ′ ← ⟨e⟩ ⊕ tr ′ ▷ Prepend event to trace
44: return tr ′ ▷ Return correctly reordered trace
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Thread 1 Thread 2 Thread 3
acq(m)
wr(x)
wr(y)
rel(m)

acq(m)
sync(n)

sync(n)
rd(x)

sync(n)
rd(y)
rel(m)

(a) Example execution

Thread 1 Thread 2 Thread 3 Thread 4
wr(x)
acq(m)
sync(o)
sync(p)
rel(m)

acq(n)
sync(q)
sync(o)
rel(n)

acq(n)
sync(r)
sync(p)
rel(n)

acq(m)
sync(q)
sync(r)
rel(m)
rd(x)

(b) Example execution (from [86])

Figure 4. Each execution has a DC-race, i.e.,wr(x) ⊀DC rd(x),
but no predictable race. The arrows show DC ordering (ex-
cluding PO ordering). Figure 3 explains what sync(o) means.

Vindicator constructs the initial G during DC analysis (in
addition to tracking the DC relation). Alternatively, DC anal-
ysis could record only the execution’s events, and construct
G on demand if and when DC analysis detects a DC-race.

Figures 2(a), 3(a), 4(a), and 4(b) show initial constraint
graphs for three different executions (ignoring the “HB” edge
in Figure 2(a)), each of which has a DC-race but noWCP-race.
The arrows in each figure represent edges corresponding
to DC rules (a) and (b).6 The figures do not explicitly show
the PO edges that exist between events by the same thread
(DC rule (c)). Graph reachability provides transitivity (DC
rule (d)). Note that Figure 2(a)’s “WCP” edge is equivalent to
the “DC” edge that corresponds to rel(o)T1 ≺DC rd(y), where
rel(o)T1 indicates the rel(o) by Thread 1. The rest of this sec-
tion uses these four constraint graphs as running examples.

5.2 Adding Constraints to G

The initial constraint graph G lacks some of the constraints
that must exist on a correctly reordered trace. For example,
in Figure 2(a), a reordered trace that executes wr(x) and rd(x)
consecutively must execute the critical sections onm in a dif-
ferent order from the original trace. Similarly, in Figure 3(a),
a reordered trace that exposes the predictable race must
execute the critical sections on m and n in reverse order.
AddConstraints (called at line 2 in Algorithm 1) adds

constraints so that the DC-race’s events execute consecu-
tively in the reordered trace, and then discovers and adds
constraints on the ordering of critical sections.

Making events consecutive. For e1 and e2 (the input DC-
race) to be consecutive in a correctly reordered trace, every
6The figures do not explicitly depict any rule (b) edges, since in these exam-
ples all rule (b) edges are already implied by other edges, e.g., Figure 4(a)’s
rel(m) events are already ordered by a rule (a) edge composed with PO.

event that must execute before e1 or e2, must execute before
e1 and e2. Lines 12–13 add consecutive-event constraints to
G: for each predecessor event src of e1 or e2 in G, AddCon-
straints adds an edge from src to e2 or e1, respectively.
Figure 5 shows the updated constraint graphs for the

four example executions. Each constraint graph represents
consecutive-event constraints as dashed arrows. Note that
edges from e2 to e1’s predecessor (assuming e1 <tr e2) will
typically point backward relative to <tr order.

In Figure 5(a),AddConstraints adds only one consecutive-
event constraint edge from rd(x)’s predecessor (rel(m)) to
wr(x);wr(x) has no predecessors to add edges from. The same
situation applies to Figure 5(d). In Figures 5(b) and 5(c), Add-
Constraints adds an edge from wr(x)’s lone predecessor to
rd(x), and from rd(x)’s lone predecessor to wr(x).

AddConstraints adds the new constraint edges not only
toG but also to a new setC whose edges are the starting point
for discovering ordering constraints on critical sections.

Ordering critical sections. Using the added consecutive-
event constraints, AddConstraints identifies and adds or-
dering constraints on critical sections, called lock seman-
tics (LS) constraints (lines 14–19 in Algorithm 1). These con-
straints have the following form: if two critical sections on
the same lock are ordered, at least in part, in G, and each
critical section is ordered, at least in part, before e1 or e2,
then the critical sections must be fully ordered in a correctly
reordered trace.
Consider the left half of Figure 5(b), in which there is

a path from Thread 2’s acq(m) to Thread 1’s rel(m), i.e.,
acq(m)T2 {G rel(m)T1. Since both acquire events are ordered
before at least one of rd(x) orwr(x) (in this case, both acquires
reach both accesses), we know that at least part of each criti-
cal section must execute in tr ′. AddConstraints identifies
such critical sections in lines 16–17. Since these conditions
hold, acq(m)T2’s critical section must execute entirely before
rel(m)T1’s critical section, to enforce the LS rule of a cor-
rectly reordered trace on tr ′. So AddConstraints adds an
edge (dotted arrow) from rel(m)T2 to acq(m)T1 (lines 18–19).
There is now a cycle that reaches wr(x) and rd(x) (detected
at lines 20–21, as discussed below).

In general, the newly added edges may reveal new critical
sections that must be fully ordered, and soAddConstraints
continues looking for all ordered critical sections from edges
in C until convergence.

In Figure 5(c), afterAddConstraints adds the consecutive-
event edges (dashed arrows), it detects that acq(m)T4 {G
rel(m)T1 and that both critical sections reach at least one
access, so it adds an edge from rel(m)T4 to acq(m)T1. This
edge in turn creates the path acq(n)T3 {G rel(n)T2, and adds
the edge rel(n)T3 to acq(n)T2. After that, AddConstraints
finds no new edges to add (convergence), and it returns.
In Figure 5(d), after AddConstraints adds consecutive-

event edges, it detects that acq(n)T3 {G rel(n)T2 and that
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Thread 1 Thread 2 Thread 3
wr(x)
sync(o)

sync(o)
acq(m)
rel(m)

acq(m)
rel(m)
rd(x)

(a)After adding consecutive-event constraint. Ex-
ecution has a predictable race. Figure 2(b) shows
the reordered trace constructed by Construct-
ReorderedTrace.

Thread 1 Thread 2 Thread 3
acq(m)
wr(x)
wr(y)
rel(m)

acq(m)
sync(n)

sync(n)
rd(x)

sync(n)
rd(y)
rel(m)

Thread 1 Thread 2 Thread 3
acq(m)
wr(x)
wr(y)
rel(m)

acq(m)
sync(n)

sync(n)
rd(x)

sync(n)
rd(y)
rel(m)

(b) After adding consecutive-event constraints (left) and then LS constraints (right). The
resulting constraint graph is cyclic, and the execution has no predictable race.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5
acq(m)
sync(r)

acq(l)
sync(v)
acq(n)
sync(r)
rel(n)
rel(l)

sync(r)
wr(x)
rel(m)

acq(n)
sync(q)
sync(v)
rel(n)

acq(m)
sync(p)
sync(q)
rel(m)

acq(l)
sync(p)
rel(l)
rd(x)

(c) After adding consecutive-event and LS constraints. Execution has a
predictable race. Figure 3(b) shows the reordered trace constructed by
ConstructReorderedTrace.

Thread 1 Thread 2 Thread 3 Thread 4
wr(x)
acq(m)
sync(o)
sync(p)
rel(m)

acq(n)
sync(q)
sync(o)
rel(n)

acq(n)
sync(r)
sync(p)
rel(n)

acq(m)
sync(q)
sync(r)
rel(m)
rd(x)

(d) After adding consecutive-event and LS constraints.
The resulting constraint graph is cyclic, and the execu-
tion has no predictable race.

Figure 5. Constraint graphs for four example executions (example executions are from Figures 2(a), 3(a), 4(a), and 4(b))
after AddConstraints has added consecutive-event constraints (dashed arrows) and LS constraints (dotted arrows). In (a),
AddConstraints adds only consecutive-event constraints; there are no LS constraints to add. For (b), we show adding of
consecutive-event and LS constraints in two separate steps. For (c) and (d), we show all added constraints at once.

both critical sections reach at least one access, so it adds an
edge from rel(n)T3 to acq(n)T2. After adding this edge, the
graph has a cycle that lines 20–21 detect (discussed below).
In Figure 5(a), AddConstraints does not identify any

LS constraints to add (thus no dotted arrows in the figure).
The consecutive-event edge is sufficient to constrain the
reordered trace.

Detecting cycles. AfterAddConstraints adds consecutive-
event and LS constraints toG , it may be possible to construct
a correctly reordered trace that includes e1 and e2 and sat-
isfies G’s constraints—but only if G does not have a cycle of
constraints ordered before e1 or e2.AddConstraints checks
this condition (line 20) and returns an empty graph to indi-
cate a cycle (line 21). (A cycle in G that does not reach e1 or

e2 is not constraining since a correctly reordered trace does
not need to contain any events after e1 and e2.)

In Figure 5(b), we can see that a cycle exists that reaches e1
(and e2): acq(m)T1 {G rel(m)T2 {G acq(m)T1 {G wr(x)T1.
Likewise, in Figure 5(d), a cycle exists that reaches e2 (and e1),
e.g., acq(n)T2 {G rel(m)T4 {G wr(x)T1 {G rel(n)T3 {G
acq(n)T2 {G rd(x)T4. AddConstraints detects these cycles,
andVindicateRace reports the impossibility of constructing
a correctly reordered trace.

In contrast, Figures 5(a) and 5(c) are acyclic, and AddCon-
straints returns an updated graph G.

Completeness. We informally argue, but have not formally
proved, that the constraints computed by AddConstraints
are complete, i.e., AddConstraints detects no cycle if a
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predictable race exists. Our argument relies on showing that
every constraint added by AddConstraints is a necessary
constraint on any reordered trace tr ′ in which e1 and e2
execute consecutively:
• Each of AddConstraints’s consecutive-event constraints
is necessary for executing the conflicting events consecu-
tively on tr ′.
• Each of AddConstraints’s lock semantics (LS) constraints
is necessary, by the following argument. Suppose a1 and
a2 are two acquire events that both must be in tr ′, and
a2 {G R(a1) already exists from a prior step of AddCon-
straints. Since both a1 and a2 both must be in tr ′, at least
one of the critical sections must be in tr ′ in its entirety, i.e.,
either R(a1) <tr′ a2 or R(a2) <tr′ a1. Inductively assuming
that a2 {G R(a1) is a necessary constraint on tr ′, then
R(a1) ≮tr′ a2 and therefore R(a2) <tr′ a1. Thus adding
(R(a2),a1) to G is a necessary constraint on tr ′.

Since AddConstraints adds only necessary constraints,
and the initial G has only necessary constraints (since DC
is complete), all of G’s edges are necessary constraints on
tr ′. Thus a cycle would contradict the existence of tr ′ that
executes e1 and e2 consecutively.

Discussion. Although cyclic constraint graphs are possi-
ble (e.g., Figures 5(b) and 5(d)), we have not encountered a
cyclic graph in our experiments. Our experiments not only
encounter only acyclic constraint graphs, but each graph
corresponds to a true predictable race.

However, it is possible for AddConstraints to return an
acyclic graph even when no predictable race exists; Appen-
dix C shows an example execution. Briefly, the example in-
volves two pairs of critical sections on different locks whose
implicit dependencies are cyclic.

Regardless,VindicateRace is sound overall because, prior
to reporting a predictable race, it ensures it can construct a
correctly reordered trace, as described next.

5.3 Constructing a Reordered Trace

Finally, if the computed constraints do not contain a cy-
cle that reaches the input DC-race, VindicateRace tries
to construct a correctly reordered trace tr ′ by calling Con-
structReorderedTrace (line 6 in Algorithm 1). While G
provides PO and CA ordering and some LS ordering (from
Definition 2.1), it does not totally order all critical sections on
the same lock. For example, Figure 5(c) contains neither the
path rel(l)T2 {G acq(l)T5 nor the path rel(l)T5 {G acq(l)T2.
Thus an acyclic G is not sufficient to ensure that a cor-

rectly reordered trace exists. Furthermore, ConstructReor-
deredTrace is a greedy algorithm that does not backtrack to
explore all possible traces, avoiding exponential complexity
but risking failure when a correctly reordered trace exists.

Construction algorithm. ConstructReorderedTrace first
computes the set of events R that reach e1 or e2 (line 25);

these events (plus e1 and e2) must be in tr ′. Construct-
ReorderedTrace then calls AttemptToConstructTrace
(line 27), which builds tr ′ in reverse order. It first adds e2 and
e1 to tr ′ (line 33). It then selects events from R, one at a time,
and prepends them to tr ′ until tr ′ contains all events from R
(lines 34–43). To prepend an event to tr ′, tr ′ prepended with
the event must satisfy the constraints in G (line 35) and not
violate lock semantics (line 36).

Algorithm 1 omits the detailed logic for checking lock
semantics. Briefly, events in a critical section onm cannot be
prepended if m is currently held by a different thread, and a
critical section on m must be prepended in its entirety if tr ′
already contains events from another critical section on m.

AttemptToConstructTrace is a greedy algorithm that
repeatedly chooses one event to prepend to tr ′ among multi-
ple acceptable events. This choice affects the order of critical
sections on the same lock in tr ′. As line 42 shows, Attempt-
ToConstructTrace always chooses the latest event in <tr
order among acceptable events. Our insight here is that the
original order of critical sections (<tr order) is most likely to
avoid a failure to produce a correctly reordered trace. This
insight turns out to be correct in practice: in our experiments,
choosing the latest event in <tr order always succeeds, while
choosing a different legal event can lead AttemptToCon-
structTrace to fail. Appendix C shows an execution for
which choosing the latest event succeeds but choosing an-
other event may fail.

Retrying construction. As mentioned above, if tr ′ already
contains an acq(m) event, then in order to add an event
e ∈ CS(r ) where r is a rel(m) event, AttemptToConstruct-
Trace must add first add r to tr ′. However, r may not be
in R ! If AttemptToConstructTrace encounters this case
(line 38), it returns the missing event r (line 39). Construct-
ReorderedTrace then adds r and events that reach r to R
(line 29) and calls AttemptToConstructTrace again. In
the worst case, R might be missing release events for each
critical section that contains a thread’s last event in R, bound-
ing the number of times that ConstructReorderedTrace
can retry AttemptToConstructTrace.

Figure 5(c) helps to illustrate this case. After adding Thread
5’s critical section on l to tr ′, AttemptToConstructTrace
cannot legally add Thread 2’s sync(r) to tr ′ without first
adding Thread 2’s rel(l)—which is not in R. AttemptToCon-
structTrace ultimately returns Thread 2’s rel(l), and Con-
structReorderedTrace adds Thread 2’s rel(l) (and rel(n))
to R and again calls AttemptToConstructTrace, which
returns the correctly reordered trace shown in Figure 3(b).

AttemptToConstructTrace eventually returns either a
correctly reordered trace tr ′ that demonstrates a predictable
race (line 44), or it fails if and when there are no missing
release events and no legal events to add to tr ′, in which case
it returns an empty trace (line 40).
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Discussion. ConstructReorderedTrace is sound: if it re-
turns a reordered trace tr ′, it is a correctly reordered trace
in which e1 and e2 are consecutive. That is, it always fails if
no predictable race exists.
ConstructReorderedTrace is incomplete: the greedy

algorithm can fail even when a predictable race in fact exists.
Appendix C shows an execution for which ConstructReor-
deredTrace fails by always choosing the latest event, yet a
correctly reordered trace is feasible. ConstructReordered-
Trace would be complete if it tried all (exponential in trace
length) possible orders satisfying G.

A case we have not yet discussed is that an execution may
have a predictable deadlock (i.e., if a correctly reordered exe-
cution has a deadlock) but not a predictable race. Note that
WCP is sound with a deadlock caveat: a WCP-race indicates
either a predictable race or a predictable deadlock [44]. In
contrast, VindicateRace inherently reports only predictable
races and will not report predictable deadlocks. Future work
might be able to modify VindicateRace to detect sufficient
conditions for a predictable deadlock.

5.4 Asymptotic Complexity

VindicateRace’s time complexity is polynomial in N , the
length of tr , because every loop’s iteration count is bounded
by G’s size (nodes plus edges). The polynomial’s degree de-
pends on how VindicateRace is implemented. Vindicate-
Race uses Ω(N ) space for both G and tr ′.

6 Evaluation

This section evaluates Vindicator’s ability to detect pre-
dictable races and its run-time performance, compared with
competing approaches.

6.1 Implementation

We implemented Vindicator in RoadRunner,7 a dynamic anal-
ysis framework for concurrent Java programs [32] that is
the implementation platform for the FastTrack race detec-
tor [30, 33, 34, 71]. RoadRunner provides analysis hooks at
memory accesses and synchronization operations by instru-
menting Java bytecode dynamically at class loading time.

Our implementation of Vindicator is publicly available.8
The implementation has two main components: DC anal-

ysis and VindicateRace. DC analysis constructs the con-
straint graphG as it executes, storing it in memory, and logs
all detected DC-races. Vindicator performs WCP and HB
analyses alongside DC analysis to determine if each DC-race
is also a WCP-race and/or an HB-race. When the program
execution ends, Vindicator calls VindicateRace on each
DC-only race, which is a DC-race that is not also a WCP-race.
Since every WCP-race is a DC-race and every WCP-race

7We used RoadRunner version 0.5 (https://github.com/stephenfreund/
RoadRunner/releases/tag/v0.5), released February 2017.
8https://github.com/PLaSSticity/Vindicator.git

is a true predictable race or deadlock [44], only DC-races
that are not WCP-races need to be vindicated to verify true
predictable races. The implementation supports optionally
calling VindicateRace on a WCP-race to obtain a correctly
reordered trace or to distinguish a race from a deadlock.

DCanalysis and constraint graph construction. Our im-
plementation of DC analysis handles read, write, acquire, and
release events according to Algorithm 2 in Appendix A. For
thread fork (parent to child) and join (child to parent) edges,
DC analysis directly DC-orders parent and child threads by
joining vector clocks and updating G accordingly. The anal-
ysis similarly handles volatile write–read edges and static
class initializers edges [49]. It handles Object.wait() by treat-
ing it as a lock release followed by an acquire. Two evaluated
programs (pmd and tomcat) fork threads implicitly, using
constructs from java.util.concurrent instead of explicitly in-
voking Thread.start(). Since RoadRunner does not currently
support interposing on these constructs, DC analysis detects
thread start and terminate in these cases and conservatively
adds thread fork and join edges.
For each event e that DC analysis handles, the analysis

creates an event node e in the constraint graph G and adds
edge(s) to G for newly established DC ordering(s). DC anal-
ysis minimizes the number of edges added to G, adding
(esrc , e ) to G only if esrc {G e does not already hold, using
DC analysis vector clocks to determine which ordering(s)
have been newly established at e . To determine each esrc ,
DC analysis tracks, for each variable x and synchronization
object m, the last event by each thread that accessed x or m.
DC analysis processes parallel events in parallel, using

fine-grained synchronization on analysismetadata and nodes
in G to provide analysis atomicity without serializing the
analysis. Since the analysis does not observe a total order
<tr of events, it assigns each event node a Lamport times-
tamp [46] such that e ≺HB e

′ =⇒ ts(e ) < ts(e ′).
DC analysis uses an instrumentation “fast path” that iden-

tifies and skips redundant accesses (if there is a prior write, or
if the prior and current events are reads) to the same variable
by the same thread without interleaving synchronization.
The fast path reduces run-time overhead and the size of G.
Reducing G’s size not only reduces space overhead, but it
improves VindicateRace’s run time. To further reduce the
size of G, DC analysis merges adjacent PO-ordered nodes
on the fly, i.e., (e, e ′) ∈ G becomes a single node, if e and e ′
are both read and write events and e has no other outgoing
edges and e ′ has no other incoming edges.

WCP and HB analyses. The implementation performs DC,
WCP, and HB analyses on the same observed trace. We im-
plemented WCP and HB analyses in RoadRunner (instead
of using the WCP authors’ available implementation [44]
or the FastTrack implementation in RoadRunner [30, 34])

https://github.com/stephenfreund/RoadRunner/releases/tag/v0.5
https://github.com/stephenfreund/RoadRunner/releases/tag/v0.5
https://github.com/PLaSSticity/Vindicator.git
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to provide a fair comparison with DC analysis and to iden-
tify which DC-races are DC-only races. Each analysis’s time
complexity is linear in the size of the trace.

Handling DC-races. When DC analysis detects a DC-race
between two events e1 and e2, it updates vector clocks and
G so that e1 ≺DC e2 and e1 {G e2. This action avoids the
possibility of a DC-race detected later in the run from being
dependent on an earlier DC-race. Note that every HB-race
is a WCP-race, and every WCP-race is a DC-race.

At a read or write event e , DC analysis may detect multiple
DC-races with prior read or write events e ′ such that e ′ ⊀DC

e . To avoid the complexity of determining whether some of
these DC-races are dependent on each other, DC analysis
records only a “shortest” DC-race, i.e., e ′ ⊀DC e such that
ts(e ′) is maximal (potentially choosing arbitrarily among
multiple concurrent events).

VindicateRace. Vindicator calls VindicateRace (Algo-
rithm 1) on each DC-only race separately, using graph tra-
versals to compute reachability between events. Before Vin-
dicateRace returns, it removes all edges that it added to G,
in order to check each DC-race independently.
As a sanity check that is not required for Vindicator’s

correctness, the implementation optionally checks that tr ′
returned by ConstructReorderedTrace is a correctly re-
ordered trace according to Definition 2.1.

VindicateRace uses two correctness-preserving optimiza-
tions. First, AddConstraints exploits PO ordering among
events by the same thread to avoid considering many re-
dundant acquire–release pairs. Second, AddConstraints
only considers events within a window of events between e1
and e2, based on events’ Lamport timestamps. To preserve
correctness, AddConstraints expands the window on the
fly to include each edge it adds to G.

6.2 Methodology

We evaluate Vindicator using benchmarked versions of real
programs: the DaCapo benchmarks [7], version 9.12 Bach.
We use RoadRunner’s provided support for harnessing and
running the DaCapo programs (e.g., for dynamic bytecode
instrumentation in the presence of DaCapo’s custom class
loading); the provided workloads are close to DaCapo’s de-
fault workload size. RoadRunner does not currently support
eclipse, tradebeans, or tradesoap; our evaluation excludes
those programs, as well as fop since it is single threaded.

The experiments run on a quiet system with an Intel Xeon
E5-2683 14-core processor with hyperthreading disabled and
256GB of main memory, running Linux 3.10.0. We configure
RoadRunner to tell programs that there are 8 available cores,
which causes several DaCapo programs to create 8 worker
threads. We run RoadRunner with the HotSpot 1.8.0 JVM
and let it choose and adjust the heap size on the fly.

Statically distinct races (dynamic races)
Program HB-races WCP-races DC-races
avrora 5 (933) 5 (934) 5 (996)
batik 0 (0) 0 (0) 0 (0)
h2 10 (690) 11 (793) 11 (1,027)
jython 3 (3) 3 (4) 3 (4)
luindex 1 (1) 1 (1) 1 (1)
lusearch 0 (0) 0 (0) 0 (0)
pmd 4 (13) 4 (13) 5 (23)
sunflow 2 (8) 2 (10) 2 (14)
tomcat 109 (4,604) 110 (4,659) 110 (4,677)
xalan 4 (16) 63 (3,420) 67 (4,660)
Total 138 (6,268) 199 (9,834) 204 (11,402)

Table 1. HB-, WCP-, and DC-races detected by our imple-
mentation. DC-races include all WCP-races; WCP-races in-
clude all HB-races. VindicateRace confirmed that ev-

ery DC-race is a true predictable race. Each result is the
average of 10 trials, rounded to the nearest integer.

Program Static DC-only race Event distance

h2
StringCache.getNew():93 11,288–248,799
StringCache.get():48

h2
StringCache.getNew():83 12,438–14,182
StringCache.get():54

pmd
PMD.getSourceTypeOfFile():152
PMD.<init>():57

pmd
PMD.setExcludeMarker():234
PMD.processFile():96

xalan
LocPathIterator.setRoot():369 24,870–71,922,359
LocPathIterator.setRoot():370

xalan
AttributeIterator.getNextNode():56
LocPathIterator.setRoot():372

xalan
FastStringBuffer.<init>():210 23,540–106,725
FastStringBuffer.append():653

xalan
FastStringBuffer.<init>():210 2,146–2,629,775
FastStringBuffer.append():488

xalan
OneStepIterator.setRoot():97
OneStepIterator.setRoot():97

Table 2. Characteristics of the nine static DC-only races
reported by Vindicator in our experiments. Each race is an
unordered pair of static locations, which are represented as
class, method, and line number. Event distance is the range
of event distances (distance apart in <tr between the two
conflicting events) across all dynamic instances of the race,
from a separate experiment that totally orders events.

6.3 Detection Coverage of Predictable Races

Here we evaluate Vindicator’s predictable race coverage
compared with HB and WCP analyses.

Table 1 reports races detected by DC, WCP, and HB analy-
ses on the same trace. For each kind of race, the table reports
statically distinct races (a statically distinct race is an un-
ordered pair of static program source locations), followed by
dynamic races (a dynamic race is a pair of events in the trace;
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multiple dynamic races may correspond to the same stati-
cally distinct race) in parentheses, averaged over 10 trials.

The table shows that on average DC analysis reports five
static DC-only races, i.e., statically distinct DC-races that are
not WCP-races. In addition, there are four static DC-only
races (in h2, pmd, and xalan) that each occurs as a static
DC-only race in 1 or 2 out of 10 trials, so they are not shown
in the table due to rounding.

Table 2 shows details of the nine static DC-only races de-
tected across the 10 trials. These static DC-only races did not
manifest as a WCP-race in any of the trials, except for both
of h2’s races and xalan’s AttributeIterator.getNextNode():56–
LocPathIterator.setRoot():372 race, whichmanifest as aWCP-
race in at least one trial. The table shows each statically dis-
tinct race’s two static source locations and the range of event
distances across all dynamic instances of the DC-only race
across all trials in which it occurred. A dynamic race’s event
distance is the number of events apart, in the observed trace
order <tr , that the two conflicting events occurred. Since the
implementation does not totally order events (Section 6.1),
we collected event distances in a separate 10 trials that use
global synchronization to assign totally ordered timestamps.
In these 10 separate trials, five of Table 2’s nine races oc-
curred as static DC-only races.
Several programs have dynamic DC-only races, i.e., dy-

namic DC-races that are not also WCP-races. For example,
the table reports 62 dynamic DC-only races on average for
avrora. However, each of these races maps to the same stati-
cally distinct race as some dynamic WCP-race in the same
trial, so avrora has no static DC-only races.

Event distances of all dynamic races. Figure 6 plots the
cumulative distribution of event distances of all dynamic
races from the 10 separate, globally synchronized trials de-
scribed above. Each dynamic race is either a DC-only race,
a WCP-only race (WCP-race that is not an HB-race), or an
HB-race, and appears exactly once in the plot. For any event
distance, the plot shows the percentage of dynamic races
that have at least that event distance.
The plot shows that DC-only races have larger event

distances than HB-races or WCP-only races by an order
of magnitude or more. This result is notable for two rea-
sons. First, prior work that is complete cannot scale beyond
bounded windows of execution (Section 7) and would thus
have difficulty finding many DC-only races. Second, Vin-
dicateRace successfully analyzes every dynamic DC-only
race (Section 6.4) despite their large event distances.

Vindicating DC-races. By default, the Vindicator imple-
mentation invokes VindicateRace on each dynamic DC-
only race, i.e., the difference between dynamic DC- andWCP-
races in Table 1. In our experiments, VindicateRace con-

firms that every dynamic DC-only race is a true pre-

dictable race. That is, for every dynamic DC-race in Table 1
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Figure 6. Cumulative distribution of the event distance of
three kinds of dynamic races. For a given event distance, the
plot shows the percentage of dynamic races with at least
that event distance.

LS constraints added 0 1 2–3 4–7 8–15 16–135
DC-only races 14,398 553 325 212 149 32

Outer loop iterations 1 2 3 4 5 6–14
DC-only races 14,398 942 158 132 26 13

Table 3. Characteristics of VindicateRace (Algorithm 1)
for all dynamic DC-only races across the 10 trials.

that is not also a WCP-race, VindicateRace verifies that
it is a true predictable race: VindicateRace never encoun-
ters a cycle nor fails to construct a reordered trace, and it
always reaches line 8 in Algorithm 1, returning a correctly
reordered trace tr ′ that exposes the predictable race. (As a
sanity check, our experiments also run VindicateRace on
everyWCP-only and HB-race, always producing a correctly
reordered trace that exposes a race.)

Table 3 shows characteristics of VindicateRace analyzing
each of the dynamic DC-only races from the 10 trials. The ta-
ble reports the distribution across all dynamic DC-only races,
i.e., across all calls to VindicateRace. LS constraints added
is the number of lock semantics (LS) constraints (edges) that
AddConstraints adds (lines 18–19 in Algorithm 1). Outer
loop iterations is the number of executed iterations of the
do–while loop in AddConstraints (lines 14–22).
The table shows that for most dynamic DC-only races,

AddConstraints adds no LS constraints and consequently
does not repeat its outer loop. (AddConstraints always
adds consecutive-event constraints; lines 12–13.) But for more
than 1,000 DC-only races, AddConstraints performs mul-
tiple loop iterations and adds several LS constraints.
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Base Slowdown (normalized to Base time) Memory usage (GB)
Program Events #Thr time Empty WCP DC Vindicator WCP DC Vindicator
avrora 1,400M (160M) 7 (7) 2.1 s 3.2× 23× 30× 33× (0 s) + 9.7 s < 2 < 2 < 2
batik 160M (12M) 8 (7) 2.6 s 3.7× 13× 14× 16× (0 s) + 0 s 4.4 4.5 5.9
h2 3,800M (460M) 10 (9) 4.7 s 6.3× 70× 110× 110× (4.3 s) + 790 s 39 68 64
jython 230M (82M) 2 (2) 2.2 s 5.4× 27× 33× 37× (0 s) + 0 s < 2 < 2 < 2
luindex 400M (45M) 3 (3) 1.1 s 5.1× 47× 58× 59× (0 s) + 0 s 2.1 4.3 4.7
lusearch 1,400M (190M) 10 (10) 1.1 s 8.7× 38× 45× 47× (0 s) + 0 s 5.5 5.8 7.2
pmd 200M (25M) 9 (9) 1.2 s 5.1× 19× 22× 22× (0.062 s) + 0.13 s < 2 2.9 2.6
sunflow 9,700M (760M) 17 (9) 1.7 s 10× 88× 98× 120× (0 s) + 0.016 s < 2 < 2 < 2
tomcat 44M (18M) 35 (22) 0.88 s 3.9× 13× 18× 21× (0 s) + 7.1 s 2.6 3.1 4.3
xalan 610M (260M) 9 (9) 2.1 s 2.9× 42× 64× 91× (11 s) + 2,400 s 8.0 12 34

Table 4. Run time and memory usage for Vindicator and other analysis configurations. All values (except thread counts) are
rounded to 2 significant figures. The table reports Vindicator’s slowdown relative to uninstrumented execution as the first
value in the Vindicator column (e.g., 33× for avrora). The text explains other values.

6.4 Run-Time Performance

Table 4 shows execution time, memory usage, and other
dynamic characteristics of Vindicator, compared with config-
urations that perform a subset of Vindicator’s functionality.
Each value is the arithmetic mean from the 10 trials used in
the rest of the evaluation. Events is total executed program
events (memory accesses and synchronization operations);
the subset of events that are not filtered out by fast-path
instrumentation is in parentheses. #Thr is the total number
of threads created and, in parentheses, the maximum number
of threads active at any time. Reported execution times are
wall-clock times. Memory usage is the maximum memory
usage across all full-heap garbage collections (GCs) in the
execution. Some executions perform no full-heap GCs be-
cause the JVM sets the initial heap size to 2 GB, so the table
reports only values for full-heap GCs that exceed 2 GB. The
Base and Empty configurations never exceed 2 GB, so we
omit them from the table.
Base time reports execution time of an uninstrumented

program. Other execution times are normalized to Base time.
Empty executes RoadRunner’s Empty tool, which instru-
ments programs to generates events, but performs no anal-
ysis on them. TheWCP configuration performs only WCP
analysis, which includes HB analysis. DC performs DC anal-
ysis in addition to WCP analysis, but does not construct the
constraint graph G. The table shows that WCP adds sub-
stantial run-time and memory overhead. On top of WCP,
DC adds moderate run-time overhead but sometimes adds
high memory overhead. The memory overhead is expected
as even though DC is similar algorithmically to WCP, each
analysis maintains separate data structures.

The Vindicator configuration computes all relations while
also building the constraint graph; when the program ter-
minates, Vindicator calls VindicateRace on each DC-race.
Each cell reports three numbers: Vindicator’s run time nor-
malized to Base time, which includes calling VindicateRace
on a single dynamic instance of each static DC-only race

(shown in parentheses as non-normalized run time), followed
by the additional non-normalized run time for checking all
remaining dynamic DC-only races (i.e., every dynamic DC-
only race not already checked as a static DC-only race). For
example, Vindicator takes 91× longer than 2.1 s to analyze
xalan, including 11 s to run VindicateRace, on average, on
4 static DC-only races. It takes an additional 2,400 s to run
VindicateRace on 1,236 additional dynamic DC-races. See
Table 1 for corresponding static and dynamic race counts.

Building the constraint graph G adds relatively low run-
time overhead over DC, and often adds low memory over-
head because merging event nodes (Section 6.1) reduces G’s
size significantly. Vindicator adds high memory overhead
over DC for xalan, which we have confirmed is due to build-
ing the constraint graph, not from running VindicateRace.
In a few cases, building G results in lower memory over-

head than not building G . This counterintuitive result is due
to the way we measure memory overhead: by recording the
maximum of reported live memory across all full-heap GCs,
which is an imperfect estimate of maximum live memory size.
As a result, the reported memory is affected by how often
GC happens and by the JVM’s automatic adjustments to the
heap size between GCs. RoadRunner periodically cleans up
analysis resources that are no longer in use, further affecting
the measurements.
The table shows that a small fraction of Vindicator’s run

time is from calling VindicateRace on static DC-only races
(the times in parentheses). Vindicator incurs this overhead
only for the three programs that have static DC-only races.
Vindicator takes 11 seconds on average to analyze 4 static
DC-only races for xalan, and a fraction of a second for 1 static
DC-only race for pmd. For h2, only 3 out of 10 trials have a
static DC-only race, which VindicateRace takes 14 seconds
on average to analyze (or 4.3 seconds on average across all 10
trials, as the table reports). VindicateRace’s relatively high
cost for h2 is mainly due to ConstructReorderedTrace:
the races’ event distances are not large, but the events occur
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late in the execution, so the size of the reordered trace is
large, and in fact most of the execution time is GC time.
The additional cost of analyzing every dynamic DC-only
race (the time values right of the ‘+’ symbol) is nontrivial—a
few programs have many dynamic DC-only race—but the
average cost of vindicating each race is low.

These results show that, in practice, Vindicator is efficient
enough for testing-time use, including for finding and vindi-
cating DC-races whose accesses are millions of events apart.

6.5 Summary and Discussion

Our prototype implementation of Vindicator adds significant
performance costs, but the overheads are likely acceptable for
heavyweight testing and worth the cost to expose new, hard-
to-detect data races. The implementation of VindicateRace
is efficient enough to produce reordered traces that verify
races between accesses separated by millions of events.
Regarding coverage, Vindicator detects more predictable

races than existing approaches. It finds more races thanWCP
analysis [44], which has the highest coverage among existing
sound predictive analyses that scale to full execution traces.
Existing approaches that predict more races than WCP rely
on constraint solving and cannot scale beyond bounded win-
dows of execution [38, 74, 79] (Section 7). Our results show
that many DC-only races’ accesses are millions of events
apart—outside the range of windowed approaches.
Furthermore, in our experiments, Vindicator detects all

predictable races (according to Definition 2.2) in real program
executions. This work thus helps answer an open question
of just how many predictable races exist in real programs.

7 Related Work

Prior work introduces a variety of approaches for detecting
data races.

Static analysis. Static race detection can detect all feasible
data races across every execution [26, 61, 62, 70, 92], but it is
inherently unsound (reports false races). In practice, existing
techniques report thousands of false races (e.g., [5, 47]). Static
analysis results can optimize dynamic analysis, but the high
rate of false positives limits the benefits [21, 25, 47, 91].

Dynamic analysis. Dynamic analysis analyzes a single ex-
ecution and is typically sound. (An exception is lockset analy-
sis, which detects false races [21, 23, 64, 65, 75, 90].) Happens-
before analysis detects conflicting events unordered by the
happens-before relation [25, 30, 46, 69, 80, 81]. Several other
analyses detect a similar set of races, based on conflicting
regions or making conflicting events to happen simultane-
ously [5, 6, 24, 27, 77, 89].
Data races manifest nondeterministically under specific

thread interleavings, program inputs, and execution envi-
ronments so that they may stay hidden even for extensively
tested programs [88]. This nondeterminism can require tens

or hundreds of runs or more to manifest a race [95] and
takes weeks to reproduce, diagnose, and fix in production
systems [35, 51]. A production-time analysis finds data races
that occur in production settings, using sampling to trade
coverage for performance [5, 14, 27, 42, 55, 83, 94] or requir-
ing custom hardware support [22, 68, 76, 93, 95].

Predictive analysis. Sound predictive analysis detects data
races that are possible in an execution other than the ob-
served execution [20, 38, 39, 44, 50, 74, 79, 86]. Most existing
sound predictive analyses cannot scale to full program exe-
cutions; they instead analyze bounded windows of execution
(e.g., 500-10,000 events), so they cannot predict data races
between accesses that are “far apart” in the observed execu-
tion [20, 38, 39, 50, 74, 79, 86]. The exception isweak-causally-
precedes (WCP) analysis, which can analyze whole program
executions [44]. However, WCP analysis is incomplete, miss-
ing races that are knowable from a dynamic execution, not
only in theory but also in practice (Section 6.3).
In concurrent work with ours, DigHR [53] uses a new

afterward-confirm (AC) relation that relaxes causally-precedes
(CP) [86] for critical sections with conflicting writes. The
paper claims that AC is sound, but to our understanding, AC
is unsound because it does not compose with HB. The paper’s
evaluation claims efficient online analyses for AC and CP,
but does not explain how the implementation overcomes
the known challenges of developing an online CP (or AC)
analysis [73, 86], nor how DigHR outperforms CP and even
FastTrack [30]. Furthermore, the evaluation does not report
how many events the evaluated programs execute.
Some predictive approaches detect races beyond those

knowable from an observed dynamic execution alone, by
encoding control-flow constraints in addition to dynamic
execution constraints [38–40]. These approaches can thus
predict some races that Vindicator cannot find. However,
these approaches can only scale to analyzing bounded win-
dows of execution, so they cannot find predictable races
whose accesses are “far apart,” including many of the DC-
only races detected by Vindicator (Section 6.3).

Schedule exploration. Other approaches explore multiple
thread interleavings, either systematically or based on heuris-
tics for exposing new behaviors [16, 18, 28, 36, 60, 77]. In
contrast, predictive analysis detects data races from a single
observed execution, making it complementary with schedule
exploration.Maximal causality reduction combines predictive
analysis with schedule exploration [37].

Alternatives to detecting data races. Researchers have in-
troduced language, type, and system support for avoiding
data races or providing well-defined behavior for them [1,
3, 8, 15, 29, 52, 56–58, 66, 72, 76, 78, 84, 85, 87]. Existing so-
lutions have significant drawbacks that have limited their
adoption, such as requiring writing code in new languages
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or adding type annotations, impacting production-time per-
formance, or requiring significant hardware changes.

8 Conclusion

Vindicator advances the state of the art in sound predictive
race detection by detecting all predictable races (under the
assumption that conflicting accesses cannot be reordered)
from full program executions in time and space that are rea-
sonable for heavyweight in-house testing. Vindicator detects
and verifies hard-to-detect races between accesses that are
millions of events apart—outside the range of windowed
approaches—and also detects and verifies races that the prior
state-of-the-art unbounded approach (WCP) cannot find.

A DC Analysis Details

The following notation and terminology follow the WCP
paper’s [44]. A vector clockC : Tid 7→ Val maps each thread
to a nonnegative integer [59]. Operations on vector clocks
are point-wise comparison (⊑) and point-wise join (⊔):

C1 ⊑ C2 ⇐⇒ ∀t .C1 (t ) ≤ C2 (t )

C1 ⊔C2 ≡ λt .max (C1 (t),C2 (t))

DC analysis, detailed in Algorithm 2, handles each kind of
event in a trace and maintains the following analysis state:
• a vector clock Ct for each thread t ;
• vector clocks for each program variable, Rx andWx , rep-
resenting the last read and write to x by each thread;
• vector clocks Lrm,x and Lwm,x that represent joined critical
sections on lockm that have read and written x ;
• a set of variables read andwritten by each lockm’s ongoing
critical section (if any), Rm andWm ; and
• for each lock, two queues for each pair of threads,Acqm,t (t

′)
and Relm,t (t

′), explained below.
Initially, every vector clock maps all threads to 0, and every
set and queue is empty.
At each release event r executed by t , the analysis incre-

ments t ’s logical time Ct (t ) (line 12). This action discerns
events that occur before and after r , since later the analysis
may order r to an event by another thread.
The analysis orders events by DC rule (a) as follows. At

a read or write to x by t in a critical section on lockm, the
analysis joins Ct with all prior critical sections on m that
have performed conflicting events to x (lines 15 and 21). The
analysis updates Lrm,x and Lwm,x at each release ofm based
on which variables the latest critical section onm accessed
(lines 8–9).

To order events by rule (b) of DC, the analysis uses the
queues of vector clocks,Acqm,t (t

′) and Relm,t (t
′).Acqm,t (t

′)
is a queue of vector clocks, each of which corresponds to an
acquire of lockm by t ′ that has not been determined to be
DC ordered to the most recent release ofm by t . Relm,t (t

′)
maintains a queue of vector clocks for the release events cor-
responding to each acquire event represented in Acqm,t (t

′).

Algorithm 2 DC analysis at each event type
1: procedure Acqire(t ,m)
2: foreach t ′ , t do Acqm,t ′ (t ).Enque(Ct )
3: procedure Release(t ,m)
4: foreach t ′ , t do
5: while Acqm,t (t

′).Front() ⊑ Ct do
6: Acqm,t (t

′).Deque()
7: Ct ← Ct ⊔ Relm,t (t

′).Deque()
8: foreach x ∈ Rm do Lrm,x ← Lrm,x ⊔Ct
9: foreach x ∈Wm do Lwm,x ← Lwm,x ⊔Ct
10: Rm ←Wm ← ∅

11: foreach t ′ , t do Relm,t ′ (t ).Enque(Ct )
12: Ct (t ) ← Ct (t ) + 1
13: procedure Read(t ,x )
14: foreachm ∈ HeldLocks(t ) do
15: Ct ← Ct ⊔ L

w
m,x

16: Rm ← Rm ∪ {x }

17: ifWx @ Ct then DC-race
18: Rx (t ) ← Ct (t )

19: procedure Write(t ,x )
20: foreachm ∈ HeldLocks(t ) do
21: Ct ← Ct ⊔

(
Lrm,x ⊔ L

w
m,x
)

22: Wm ←Wm ∪ {x }

23: ifWx @ Ct then DC-race
24: if Rx @ Ct then DC-race
25: Wx (t ) ← Ct (t )

These queues of vector clocks help to order events by DC
rule (b): at t ’s release ofm, the analysis checks whether the
release is ordered to a prior acquire ofm by each thread t ′, by
checkingAcqm,t (t

′).Front() ⊑ Ct (line 5). If so, the algorithm
orders the release corresponding to Acqm,t (t

′).Front() to t ’s
release ofm (line 7). It is sufficient to use a queue and check
only the head (line 5): other vector clocks in the queue will
pass the check only if the head also passes the check (since
PO implies DC).

At each read and write, DC analysis maintains the logical
time of each thread’s last read and write to x (lines 18 and
25). The analysis checks for DC-races by checking for DC
ordering with prior conflicting events to x ; a failed check
indicates a DC-race (lines 17, 23, and 24).

Asymptotic complexity. DC analysis has the same time
complexity as WCP analysis [44]:O (N × (L×T +T 2)), where
N , L, and T are the numbers of events, locks, and threads,
respectively.9 Like WCP analysis, DC analysis uses Ω(N )
space in the worst case because there exist executions for
which the number of Acq and Rel queue elements is equal
to the number of acq and rel events executed so far [44].

9We have confirmedwith the authors that because each read and write event
takes O (L ×T ) time, time complexity is in fact O (N × (L ×T +T 2)) [45],
not O (N × (L +T 2)) as originally stated in the paper [44].
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B DC Completeness Proof

This section proves the following theorem from Section 4:

Theorem 1 (DC completeness). If a trace tr has a predictable
race (according to Definition 2.2), then tr has a DC-race.

To prove completeness, we use the following lemma:

Lemma 1. For any two events e1 and e2 in tr , if e1 ≺DC e2
then e1 cannot be correctly reordered after e2.

To prove the lemma, we introduce a concept called DC-
distance that defines a finite minimum number of DC rules
that must be applied to establish e ≺DC e

′:

Definition (DC-distance). The DC-distance of events e and
e ′, d (e, e′), is defined as follows (the rules refer to the DC rules
in Definition 4.1):

d (e, e′) = min




0 if e ≺DC e
′ by rule (a)

1 + d (A(e), e′) if e ≺DC e
′ by rule (b)

0 if e ≺PO e
′ by rule (c)

1 +mine ′′ (max(d (e, e′′), d (e′′, e′)))
if ∃e ′′ | e ≺DC e

′′ ∧ e ′′ ≺DC e
′ by rule (d)

∞ otherwise

Note that d (e, e′) = ∞ if and only if e ⊀DC e ′. Like DC,
the DC-distance rules feed into each other recursively, e.g.,
rule (d) satisfies rule (b), which satisfies rule (d), etc. DC-
distance converges (provides finite distance for DC-ordered
events) by being defined as taking the minimum distance
over all choices.

Proof of Lemma 1. Let e1 and e2 be events in tr such that
e1 ≺DC e2. We prove the lemma by induction on the DC-
distance d (e1, e2 ).

Base case: d (e1, e2 ) = 0
According to the definition of DC-distance, e1 ≺DC e2 by

DC rule (a) or (c).

Case 1: e1 ≺DC e2 by rule (a).
Then e1 is a rel(m) event and e2 is a rd(x) or wr(x) event.

According to DC rule (a), there must exist e that is a rd(x) or
wr(x) event and e ′ that is a rel(m) event, such that e ∈ CS(e1),
e2 ∈ CS(e ′), and e ≍ e2. Figure 7(a) depicts this case (with
e as a write and e2 as a read). Since e ≍ e2, by the CA rule
of correct reordering (Definition 2.1) e cannot be reordered
after e2.
Since e2 ∈ CS(e ′) and no two acquire events of the same

lock may be totally ordered without an interleaved release
event of the same lock (LS rule of Definition 2.1), e1 and all
events in CS(e1) must be reordered after e ′ in order for e1
to be reordered after e2. Since e ∈ CS(e1) and e cannot be
reordered after e2, e1 cannot be reordered after e ′. Therefore,
e1 cannot be reordered after e2.

Thread i Thread j
acq(m)
. . .

e wr(x)
. . .

e1 rel(m)
acq(m)
. . .
rd(x) e2
. . .
rel(m) e ′

(a) Base case, Case 1. The arrow
shows ordering established by DC
rule (a).

Thread i Thread j
e acq(m)

. . .
e1 rel(m)

acq(m)
. . .
rel(m) e2

(b) Inductive step, Case 1. Establish-
ing DC ordering between e1 and e2
(indicated by a solid arrow) by DC
rule (b) is preconditioned on the DC
ordering indicated by the squiggly
arrow.

Figure 7. Depictions of two cases of the Lemma 1 proof.

Case 2: e1 ≺DC e2 by rule (c).
Then e1 ≺PO e2, so e1 cannot be reordered after e2 by the

PO rule of correct reordering (Definition 2.1).

Inductive step: d (e1, e2 ) > 0
Suppose the lemma statement holds true for all events e

and e ′ in tr such that d (e, e′) < d (e1, e2 ).
Since d (e1, e2 ) > 0, by the definition of DC-distance, at

least one of the following cases applies.

Case 1: e1 ≺DC e2 by rule (b) and d (e1, e2 ) = 1+d (e, e2 ) where
e = A(e1).

Then e1 and e2 are rel(m) events on the same lock, and e is
the acq(m) corresponding to e1. According to rule (b) of the
DC relation, e1 ≺DC e2 holds because e ≺DC e2. Figure 7(b)
depicts this case.

By the inductive hypothesis, since d (e, e2 ) < d (e1, e2 ) and
e ≺DC e2, e cannot be reordered after e2. Since no two acquire
events of the same lock may be totally ordered without an
interleaved release event of the same lock (LS rule of Defi-
nition 2.1), therefore e1 and all events in CS(e1), including
e , must be reordered after e2 in order for e1 to be reordered
after e2. Since e cannot be reordered after e2, then e1 cannot
be reordered after e2.

Case 2: e1 ≺DC e2 by rule (d) and ∃e | d (e1, e2 ) = 1 +
max(d (e1, e), d (e, e2 )).
Let e be such that e1 ≺DC e ≺DC e2 and d (e1, e2 ) = 1 +

max(d (e1, e), d (e, e2 )). Therefore, d (e1, e) < d (e1, e2 ) and d (e, e2 )
< d (e1, e2 ). So by the inductive hypothesis, e1 cannot be re-
ordered after e and e cannot be reordered after e2. Therefore,
e1 cannot be reordered after e2.

Thus, in all cases e1 cannot be reordered after e2. □

We can now prove that DC is complete.
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Proof of Theorem 1. The proof proceeds by contradiction.
Suppose tr has a predictable race (Definition 2.2) but no
DC-race. Let e1 and e2 be two events in tr such that there
is a predictable race between e1 and e2 and e1 ≺DC e2. By
Lemma 1, e1 cannot be reordered after e2. Note that e1 and
e2 cannot be directly ordered by rule (a) or (b) of the DC
relation (Definition 4.1), both of which require e1, which is a
read or write access, to be a release event. Thus one or both
of the following hold:

Case 1: e1 and e2 are directly ordered by DC rule (c).
So e1 ≺PO e2 in tr . Thus e1 and e2 cannot be conflicting

accesses and therefore cannot be a predictable race, a con-
tradiction.

Case 2: e1 and e2 are directly ordered by DC rule (d).
So ∃e | e1 ≺DC e ≺DC e2 in tr . By Lemma 1, e cannot be

reordered before e1 or after e2, so e1 <tr′ e <tr′ e2 for any
reordered trace tr ′ that includes e2. Thus e1 and e2 cannot
be consecutive in any reordered trace, which contradicts the
initial assumption of a predictable race between e1 and e2.

Thus all applicable cases lead to a contradiction. □

C Limitations of VindicateRace

This section provides four example execution traces that
collectively demonstrate that ConstructReorderedTrace
is incomplete and AddConstraints is unsound (both pro-
cedures are from Algorithm 1). For all four examples, there
is a DC-race, and the constraint graph is acyclic after Add-
Constraints adds its constraints.

ConstructReorderedTrace

We found that for our evaluated programs, Construct-
ReorderedTrace always succeeded if it chose the latest
legal event, but it sometimes failed if allowed to choose
any legal event (Section 5.3). We first show examples where
choosing an event other than the latest event can fail (i.e., if
we change line 42 of ConstructReorderedTrace to “let
e ∈ legalEvents” so the algorithmmay choose any legal event
to prepend at each step), then show an example where choos-
ing the latest event can fail.

Choosing arbitrary events can fail. Figure 8 shows an ex-
ecution for which a correctly reordered execution exists, but
ConstructReorderedTrace can fail if it chooses a certain
legal event at each step. The figure marks six legal events
that ConstructReorderedTrace has so far prepended to
tr ′. However, there is no seventh legal event to prepend to
tr ′. Since acq(m)T1 <tr′ rel(p)

T2 and acq(p)T3 <tr′ rel(m)T4,
the remaining mandatory constraints rel(m)T4 <tr′ acq(m)T1

and rel(p)T2 <tr′ acq(p)T3 are impossible to satisfy since
rel(m)T4 <tr′ acq(m)T1 <tr′ rel(p)

T2 <tr′ acq(p)
T3 <tr′ rel(m)T4.

Thread 1 Thread 2 Thread 3 Thread 4
acq(m)
sync(n)

6 rel(m)
acq(p)
sync(n)
rel(p)

acq(p)
sync(q)

5 rel(p)
acq(m)
sync(q)
rel(m)

2 wr(x)
sync(o)

sync(o)
acq(b)
rel(b)

4 acq(b)
3 rel(b)
1 rd(x)

Figure 8. An execution with a predictable race and a DC-
race (wr(x) ⊀DC rd(x)). Solid arrows are the initial DC con-
straints, and dashed arrows are constraints added by Add-
Constraints. The circled numbers (e.g., 1 ) represent the or-
der of events prepended to a reordered trace by Construct-
ReorderedTrace. A seventh event cannot be prepended
to the trace without violating the graph constraints or lock
semantics.

We see that ConstructReorderedTrace is a greedy algo-
rithm that chooses events without considering remaining
implicit constraints, resulting in failure in this case.

Similarly, Figure 9(a) (i.e., Figure 9 excluding the sync(s6)
events) shows an execution for which ConstructReor-
deredTrace can fail if it does not choose the latest event.
In particular, choosing rel(p)T3, or both rel(p)T5 and rel(m)T2,
prematurely (before a later legal event) will fail to construct
a correctly reordered trace.
We note that for both executions, if ConstructReor-

deredTrace always chooses the latest event, it constructs a
reordered trace successfully.

Choosing the latest event can fail. Consider Figure 9(b)
(i.e., Figure 9 excluding the sync(s4) events). (Unmodified)
ConstructReorderedTrace chooses the latest legal event
at each step, which ultimately leads to failure. In particular,
prepending rel(p)T5 and rel(m)T4 before the other critical sec-
tions on p andmmakes failure inevitable. Although choosing
the latest legal event fails, there does exist a set of legal event
choices that ConstructReorderedTrace can make to con-
struct a correctly reordered trace.
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Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7
acq(o)
sync(s1)

acq(m)
sync(s2)
sync(s3)

acq(p)
sync(s4)
sync(s5)

sync(s1)
sync(s5)
rel(m)

acq(m)
sync(s6)
sync(s7)

sync(s2)
sync(s6)
rel(p)

acq(p)
sync(s8)
sync(s9)

sync(s9)
sync(s4)
rel(m)

sync(s7)
sync(s3)
rel(p)

wr(x)
rel(o)

acq(o)
sync(s10)
sync(s8)
rel(o)

sync(s10)
rd(x)

Figure 9.We use this figure to represent three different example executions: (a) an execution omitting the sync(s6) events,
which has a predictable race; (b) an execution omitting the sync(s4) events, which has a predictable race; and (c) the unmodified
execution, which has no predictable race. The arrows represent DC ordering.

AddConstraints

The execution in Figure 9(c) (i.e., the figure exactly as shown)
has no predictable race. However, AddConstraints pro-
duces an acyclic graph for this trace. Intuitively, there exist
implicit, mutually incompatible ordering constraints on two
pairs of critical sections on different locks, for which Add-
Constraints does not produce a cycle of dependencies.
Although AddConstraints is unsound, ConstructRe-

orderedTrace is sound and thus VindicateRace is sound.
ConstructReorderedTrace fails to construct a correctly
reordered trace for Figure 9(c), and VindicateRace returns
“Don’t know” (Algorithm 1).
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