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ABSTRACT

Proximity-based interactions underlie applications such as

retail payments using smartphone-apps like Apple Pay and

Google Wallet, automated grocery store checkout, and ve-

hicular transactions for toll payments. In these applications,

a transaction takes place between two objects when they

come close to each other, with relative proximity determin-

ing the pairing. In this paper, we present a new approach to

enable highly accurate pairing of vehicles to specific lanes

in a wide-range of vehicle-based multi-lane service stations

using general-purpose commodity communication and sens-

ing technology. To evaluate its performance, we consider an

example application of pairing vehicles to respective qual-

ity check bays in an automobile manufacturing plant. Our

proposed system called Soft-Swipe works by matching nat-

ural signatures (specifically, motion signatures) generated by

the target object with the same signature detected by simple

instrumentation of the environment (a video camera or an in-

expensive sensor array). Soft-Swipe implemented in a vehi-

cle testing station performed pairing with median F-score of

96% using vision-only system, 92% using sensor-only sys-

tem and, 99% using both.

1. INTRODUCTION

Smartphone based payments are becoming the new nor-

mal as evidenced by ubiquitous nature of mobile payment

systems such as Google Wallet and Apple Pay [1, 6]. Banks

such as Mastercard and Visa are already working closely

with a number of handset developers to make it widely avail-

able [9]. These solutions practically work for a few centime-

ters of range [18] which provides a level of security to the

transaction. But, the ability to communicate over longer dis-

tances can lead to reduced service time and it can open up

opportunities for many new applications.

In this paper we explore applications in which interactions

originate from within a vehicle. Transacting from within

a vehicle can lead to shorter wait times and higher system

throughput. Further, in many situations, the user would be

thankful for reduced exposure to inclement weather condi-

tions. The applications can be broadly categorized as fol-

lows. Class-I (Temporary infrastructure): Parking pay-

ments for temporary events such as football games, circus,

fair etc. are usually processed manually (both payer and

payee) and easily lead to heavy backlog in traffic whose ef-

fect can extend for several miles. Class-II (Small-scale in-

frastructure): Application scenarios where the infrastruc-

ture is owned by small players can be categorized as fol-

lows: 1) Vehicle-specific services: Payment for services such

as car-wash, automated fueling, automated swapping of car

batteries for Electric Vehicles (EVs), automated battery charg-

ing centers for EVs, and parking charges can be made from

within the vehicle. In an automotive manufacturing plant, a

vehicle arriving at a manufacturing station needs to be cor-

rectly identified so that the appropriate set of tests can be

conducted and the appropriate actions can be taken by the

assembly line robots or humans. 2) User-specific services:

Payment for drive-thru services such as fast-food, or DVD

rental can be supported by such a system. A bank customer

can perform automatic verification from inside the vehicle

before reaching the ATM machine. Today for such applica-

tions usually the payer stops the vehicle to use a machine to

make the payment. Class-III (Large-scale infrastructure):

Highway toll collection systems can afford to deploy vari-

ous types of expensive equipment such as directional RFID

readers, laser sensors and inductive loops. Widely used ex-

amples of such systems include E-Z Pass [2], Fastrack [5]

and I-PASS [7]. Advanced systems on many US highways

do not even require the vehicles to slow down when passing

through such checkpoints.

Although for Class III applications a number of solutions

are already in place, there are few solutions available for the

other two classes. In some cases Class II applications have

resorted to using expensive Class III solutions (e.g., JFK air-

port parking payment lanes offer an option for using E-Z

Pass). This paper presents a first vehicle-to-infrastructure

(V2I) pairing system targeting Class I and Class II applica-

tions by achieving design goals of low-cost and high-accuracy.

Vehicles that are not paired are to be processed via manual

intervention, incidences of which must also be kept to a min-

imum.

Low cost and limited instrumentation of the infrastructure

are the desired criteria for the Class I and Class II applica-

tions. The existing solutions for Class III applications such
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as E-Z Pass, Fastrack and I-PASS are not readily usable by

the other two classes of applications due to the following

limitations. (i) Tag identity database access: For performing

an electronic transaction or authenticating by reading a tag’s

identity, the system needs access to a database holding the

association information with users identity and banking in-

formation. In addition, there may be multiple such databases

as there are a variety of available toll payment tags [5, 7, 2].

(ii) Hardware requirement on user end: The vehicle needs to

have a device or sticker placed near the windshield or dash-

board. Such placements are prone to mounting errors [3]

and the involvement of an additional device at the user end

limits its flexibility, since deployment is a custom effort and

upgrading the hardware is cumbersome. (iii) Limited accu-

racy: Due to the transmission range of the tags, in scenarios

with narrow lanes the signal can be picked up by multiple

tollbooths leading to inaccurate charges and unhappy cus-

tomers [4]. Additionally, the use of such tags for general

purpose applications can raise privacy concerns[14].

Low cost and limited instrumentation of the infrastructure

are the desired criteria for the Class I and Class II applica-

tions. The existing solutions for Class III applications such

as E-Z Pass, Fastrack and I-PASS are not readily usable by

the other two classes of applications due to the following

limitations. (i) Tag identity database access: For performing

an electronic transaction or authenticating by reading a tag’s

identity, the system needs access to a database holding the

association information with users identity and banking in-

formation. In addition, there may be multiple such databases

as there are a variety of available toll payment tags [5, 7, 2].

(ii) Hardware requirement on user end: The vehicle needs to

have a device or sticker placed near the windshield or dash-

board. Such placements are prone to mounting errors [3]

and the involvement of an additional device at the user end

limits its flexibility, since deployment is a custom effort and

upgrading the hardware is cumbersome. (iii) Limited accu-

racy: Due to the transmission range of the tags, in scenarios

with narrow lanes the signal can be picked up by multiple

tollbooths leading to inaccurate charges and unhappy cus-

tomers [4]. Additionally, the use of such tags for general

purpose applications can raise privacy concerns[14].

Although knowledge of location obtained from the GPS

on our smartphone can be used to address the challenges, its

accuracy ranges from a few meters to tens of meters [31]. It

can perform even poorly near large buildings and concrete

structures. Thus, it is not well suited for our needs. Optical

Character Recognition (OCR) based number plate recogni-

tion systems can be used to detect and identify a particular

vehicle. But such a technique requires a dedicated Infra Red

(IR) capable expensive camera aiming for a number plate.

Additionally, number plate can be occluded by other vehi-

cles in dense class-I and class-II applications.

The necessity of additional hardware can be addressed by

developing the smartness as part of a smartphone based ap-

plication. But the challenge in performing interactions us-

ing a longer range WiFi (or similar) technology is the accu-

rate identification of the specific device to pair with, from

a large number of in-range devices. In particular, financial

transactions are location-aimed in order to charge the ve-

hicle in a particular lane and position for the provided ser-

vices. An up-to-date map of all the vehicles can be used

to solve the problem. However, the required accuracy calls

for techniques that require major hardware upgrades in both

the Access Points (APs) and the smartphones, making it dif-

ficult to deploy in practice [30, 26, 42]. In this paper we

exploit a distinct property of Class I and Class II applica-

tions: slow and time-varying speed of the vehicles. We re-

fer to the recent time series of velocities of a vehicle as its

motion profile or motion signature. Our solution uses self-

generated natural signatures (specifically, motion signatures)

reported by the target object matched with the same signa-

ture detected by simple instrumentation of the environment

(a video camera and/or an inexpensive sensor array), layered

on commodity, general-purpose communication and sensing

technology (smartphone or other similar device with low-

cost inertial sensors) to identify a specific vehicle at a given

location (e.g., vehicle A is in lane-4 and next to gate). Our

system comprises of two components: (i) A smartphone con-

nected to the vehicle system using a Bluetooth or an OBD-II

link or 802.11p link so that it can access the motion profile of

the vehicle; (ii) A camera which might be already deployed

for security purposes (and/or) (iii) A sensor array deployed

for pairing with the vehicles in the lane.

The advantages of our system are many. Unlike range-

based pairing technologies such as Near Field Communica-

tion (NFC), our system can use any long range radio based

communication technologies. Soft-Swipe needs infrastruc-

ture areas to be instrumented with commodity products and

vehicles equipped with smartphones. Therefore the overall

cost of deployment is much lower. Finally, since the device

in the vehicle (smartphone) can be programmed, we have the

ability to personalize the interactions, such as by allowing

the driver to provide additional input, providing status up-

dates to the driver, and so on, as well as to instantly deploy

the application and updates.

Soft-Swipe makes the following contributions to the field:

(a) presents automatic calibration techniques for infrastruc-

ture sensors such as camera and sensors array exploiting Ve-

hicle to Infrastructure (V2I) links. (b) presents sensors fu-

sion techniques by studying individual sensor characteris-

tics. (c) presents a configurable matching system with pre-

cision touching 100% for reliable financial transactions and,

(d) shows results from extensive evaluation using real world

experiments. Note that our system primarily targets first two

class of applications and can work with using camera alone,

or commodity depth sensors alone.

2. SYSTEM OVERVIEW & CHALLENGES

This section first presents the overview of the Soft-Swipe

system.Then the challenges in enabling V2I (Vehicle-to-Infrastructure)
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pairing based on position are described.

2.1 Overview

Soft-Swipe enables position based V2I pairing of vehicles

entering into a multi-lane service station. This is performed

by matching motion signatures generated from two types of

sources. First, Soft-Swipe needs a signature from the ve-

hicle being serviced, and tagged with the vehicle’s iden-

tity. This signature is received by the infrastructure using

V2I links from a device such as a smartphone. The smart-

phone can fetch the motion profile from vehicle system by

using OBD-II port or by wireless links. Next, Soft-Swipe

needs signatures for the same vehicle generated by exter-

nal, location aimed devices, that is, devices that are targeted

at the locus of interaction, such as a video camera whose

field of view covers the multi-lane service station. Note that

these signatures are not tagged with the vehicle’s identity,

because the external devices only know that there is a vehi-

cle in their field of view, but do not know which vehicle it

is. Finally, note that multiple sensors may be used to pro-

vide complementary or additive information. For external

location-aimed sensing, cameras, ultra-sonic range sensors,

or passive Infrared sensors [12] may be used. In addition, LI-

DAR, RADAR and microwave technologies that do motion

estimation by measuring Doppler shifts can be used as well.

Finally, electromagnetic sensing devices such as Inductive

coils [28] may be used to detect the presence of metallic

bodies, and potentially their velocity.

Figure 1 depicts the architecture of Soft-Swipe where the

internal signature is generated by a service device in the ve-

hicle. The external, location-aimed signatures are sensed

from two sources (sensing): (a) a video camera aimed at

the service lane and (b) an array of depth sensors above the

service lane and parallel to it. Soft-Swipe uses the two types

of signatures in two important ways (detailed in §3.1 and

§3.2). First, during system initialization, the motion signa-

tures received from V2I links are used to calibrate the exter-

nal sensing components. This allows these devices to prop-

erly convert the phenomena they detect (such as, a series

of images, or the distance between where the sensor array is

mounted and a planar surface of the automobile) into motion

signatures. When the system is in operation, the generated

signatures from vision and sensors are combined adaptively

(collaboration) for obtaining an accurate motion signature.

The technique to combine the measurements from the two

sensors at a given time instant is described in §3.3. The ac-

curate motion signature thus obtained is sent to a centralized

server-side signature matching module. Here, the external

motion signatures are matched to the internal motion signa-

ture (matching) that contains the identity of the object. The

mechanism used for matching the motion signatures is de-

scribed in §3.4. When proper matching occurs, Soft-Swipe

can identify the moving object in the sensing field of view,

and by definition in the systems proximal locus of interac-

tion.

Soft-Swipe’s implementation and cost estimation details

are mentioned in §4 and evaluated in §5. Then, §6 contrasts

Soft-Swipe with several works in the literature. Finally, §7

presents possible future directions of Soft-Swipe .

2.2 Challenges

Soft-Swipe deals with several practical issues during the

sensing, collaboration and matching phases as described be-

low:

• Uncalibrated sensors: The camera-based system lacks

depth information. Thus, it cannot accurately compute

the velocity of the moving object. We need to calibrate

the camera for translating the speed as projected onto

the camera plane, i.e, pixels per second, to the common

unit of meters per second.

• Rapidly changing speed of vehicles needs fine granular

measurements: For class-I and II applications, typical

motion signatures include velocities ranging from tens

of meters/second (30 to 40 kmph) to a third of a meter

per second (1 kmph), with the speeds changing rapidly

(such as when a vehicle accelerates away or deceler-

ates to be serviced). Thus all the sensors (both internal

as well as external) have to measure a wide range of

speeds that may vary rapidly.

• Differences in sensor capabilities and characteristics

across the different types of sources: Each of the types

of sensor components used for motion profile estima-

tion have different error rates, accuracy and precision.

Collaboration and matching motion profiles across sources

thus cannot be performed simply by adding or match-

ing sample readings, even if they were converted to

common units.

• Noisy environment and multiple vehicles: Soft-Swipe

must be able to distinguish amongst objects in dense

environments. For example, in a toll-booth applica-

tion vehicles are just a few feet apart when they move

through the toll booth. Thus, the camera sensor will

see a stream of successive vehicles, with potentially

more than one vehicle in its field of view, or not see a

vehicle, because another vehicle is hiding it from view.

3. SOFT-SWIPE COMPONENTS

This section presents details of the sensing, collaboration

and matching algorithms introduced in the previous section.

As we mentioned earlier, our implementation uses two types

of uncalibrated, commodity sensors to generate the exter-

nal location-aimed motion signatures, namely, a camera or

an array of ultrasonic range sensors, and a built-in device

(smart-phone) to generate the object-tagged internal motion

signature.

3.1 Automatic calibration of Camera explor-
ing V2I links
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Figure 1: Soft-Swipe architecture

This section presents a technique for automatic camera

calibration exploiting the V2I links. Since a simple camera

does not measure the depth of objects in its field of view,

the camera needs to be calibrated in order to convert from

the rate at which objects move in the camera plane (which

is referred as optical-flow [10, 20]), and measured in pix-

els per second, to the actual velocity of the object being ob-

served. Camera calibration involves finding its height and

orientation w.r.t the ground plane. Finding exact orientation

and height of the infrastructure cameras is a tedious process.

Therefore, prior works have resorted to automatic camera

calibration techniques which are mainly studied in context

of traffic camera installations. Most of these techniques are

vanishing point based approaches where they assume lane

markers [53, 17], vehicular size [16], road lines [46], straight

line motion of vehicles [21] to calibrate a camera. However,

in contrast Soft-Swipe explores V2I communication capa-

bility of vehicles to calibrate the infrastructure cameras.

Soft-Swipe exploits the repetitive nature of vehicles travers-

ing through a station to extract precise scaling values to con-

vert the optical-flow to vehicle’s velocity. Our work is sim-

ilar to the vehicular speed estimation techniques exploiting

lane markers [50], where the movement of vehicle across

the known length (length of a marker ) is used to derive the

speed of the vehicle. Instead of assuming known geometries

or markings on the ground, Soft-Swipe exploits V2I com-

munication to know how much a vehicle has moved during

initial calibrations. Essentially, given two pixel locations L1

and L2 along the trajectory of the vehicle, Soft-Swipe ob-

tains distance between these pixel positions on the ground

plane from the velocity of the vehicles obtained from V2I

link. Similarly, for every pixel Soft-Swipe identifies a scal-

ing value for converting optical flow values to the actual

speed on the ground. Vehicles can be detected and tracked

across frames using haar based vehicles detectors [44], Deep

Neural Network (DNN) [39] based approaches. In our im-

plementation, we have created an angular filter exploring

V2I communication to mitigate the effects of vehicle detec-

tion errors. This angular filter learns the direction of ve-

hicular motion in the camera frame during calibration runs.

During the system operation, Soft-Swipe projects the optical

flow vectors along this direction. This helps in cases where

the vehicles are not detected by the vehicular detectors. The

auto-calibration then works as follows:

• After the camera is placed, a single test run is made by

the vehicle.

• Soft-Swipe collects the pixel-based location-directed,

external motion signature from the camera.

• Soft-Swipe collects the object-tagged motion signature

from the device inside the car from V2I link.

• By comparing the two motion signatures, Soft-Swipe

calibrates the camera by building a mapping function

that translates from pixels/second to meters/second across

the path of the moving object. Essentially, the mapping

function is a location dependent scaling multiplier that

converts from optical speed to actual speed. Note this

scaling values is dependent on the pixel position, there-

fore, a table of scaling values is created.

• Soft-Swipe studies the directions of the vehicular mo-

tion in the camera frame and creates angular filters for

these directions.

The above technique is used to obtain scaling values and ve-

hicular movement directions. Using these scaling values, for

every vehicle entering into the station, Soft-Swipe converts

optical-flow to fine granular motion profile. In our imple-

mentation we have used a camera with 28 fps (frames per

second) which gives a velocity at a granularity of 1/28th of

a second. For improving granularity of the motion profile

cameras with high fps can be employed.

3.2 Sensor-Fence: Fine-Grained Motion Pro-
filing with Array of Range Sensors

This section presents fine granularity motion profile es-

timation using an array of commodity depth sensors. The

array is hung from the ceiling and is parallel to the ground

as shown in Figure 2 and each lane is equipped with one
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such sensor array that covers the entire vehicular service sta-

tion. Inexpensive ultrasonic range sensors [8] that are typ-

ically used as robot-eyes [29] are used in our sensor array.

Prior work have mainly used ultrasonic sensing and com-

munication to decipher location information [57, 45, 37, 34,

19] and sensing shape of the objects [13, 35]. In contrast,

Soft-Swipe explores coarse ultrasonic based shape sensing

to first detect a vehicle’s existence and then smartly track it

for estimating motion profile.

Prior work [56] exploited the roadside sensor deployments

to track the vehicle’s time of travel between sensors for speed

estimation. Let’s refer to this approach as trigger-speed. As

a vehicle enters the lane it triggers each sensor i at a unique

time ti. The average speed between when a vehicle is de-

tected by sensor i and the next sensor i + 1 is given by
D

ti+1−ti
, where D is the distance between consecutive sen-

sors (K in numbered). This method generates K − 1 speed

estimates.

By using a different approach, the same sensor array can

be used to compute a finer granularity motion profile. Essen-

tially, Soft-Swipe uses closely placed robot-eyes (ultrasonic

sensors) to precisely estimate the shape of the vehicle at a

given time, and tracks this shape with time across a chain of

sensors. As a result, the shape of the vehicles (car, truck etc.)

is a by-product which can be used by different toll applica-

tions. To begin with, shape estimation is performed by mod-

eling a vehicle’s body as a set of planes {P1, P2, P3, ...Pn}
with a corresponding set of slopes {m1,m2,m3, ...mn}. Let

us assume that consecutive sensors numbered i and i+1 are

pointing to the same plane Pj and the vertically traveling

signals from these sensors meet the plane at points A and B,

respectively, as shown in Figure 3. The depths observed by

these sensors are hi and hi+1, respectively. Then the slope

of plane Pj is estimated as mj = (hi+1−hi

D
). In time ∆t,

the vehicle moves ahead by V∆t, and the height reduces by

V∆tmj . Therefore, the speed of the vehicle at current in-

stance can be estimated by observing rate of change of depth

and above computed slope measurement. Let us refer to this

approach as Sensor-fence since it uses the sensors as a fence

to determine the speed of the vehicle. As the sampling rate

of these sensors is quite high (20 samples/sec), we can ob-

tain a much finer grained motion profile of the vehicle. For

example, for a vehicle moving at 10 mph, with 20 sensors

placed at a separation of 2 feet, we can obtain more than

1000 samples in contrast to 20 samples obtained using the

trigger-speed approach.

To deploy a real system based on the above concept the

following practical aspects need to be considered: (i) Mea-

surement across different planes: If the points A and B are

on different planes, we cannot use the above technique. For

two points on the same plane, their rate of change of depth

must be the same, i.e., (∆hi

∆t
= ∆hi+1

∆t
). If these rates are not

the same, then the sensor reading pair must be discarded. (ii)

Number of sensors: A larger number of sensors is needed to

handle a wide range of speeds. (iii) Sensor density: As the

Figure 2: Sensor fence design. It provides: 1) Highly accu-

rate shape and speed estimation of vehicles; and, 2) Distin-

guishes very close-by vehicles.

A
) 

A

B

A

a) Slope Measurement b) Speed Measurement 

Vehicle moving with speed v

Sensor i+1 Sensor i Sensor i

depth rate observed 

by sensor-i

Figure 3: Speed calibration from sensors: a) Two points A,B

on the vehicle close to each-other can be used to measure

the slope of the plane. b) Speed of vehicle is measured using

this slope and rate of change of depth observed by sensors.

sensor density increases the inter-sensor distance decreases.

If the sensors are very close, they will see similar heights

leading to noisy estimates of the speed. (iv) Sampling time:

If the sampling rate is very high, the depth difference ob-

served within a sample time will be small and affected by the

noise floor. (v) Noisy Samples: Some of velocity samples es-

timated are prone to noise due to the flat shape of a plane on

the vehicle. Only if the depth difference hi+1 − hi ≫ 2σ,

then the measurement must be used to estimate the speed.

The sensor array based system is inexpensive and can work

even in dense vehicular environments with a wide range of

speeds.

3.3 Collaboration: Adaptive Weighted (AW)
Vision & Sensing

This section attempts to combine the motion profiles ob-

tained from a camera and sensor-array for obtaining more

accurate motion profile. First, the properties of speed esti-

mation using the sensor-array and vision systems at a given

time are studied then, an adaptive weighted scheme for ac-

curate motion profile is designed. In addition, this section

automates the calibration and modeling of sensors required

for adaptive fusing of motion profiles.

Parameters impacting vision and sensing systems: The

experimental data depicts that the vision system performance

varies with Distance from camera. As the distance between

the vehicle and the camera increases, its observability in the
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frame decreases and eventually devolves into ambient noise

beyond some point. Hence, the speed measurement accu-

racy decreases with increase in measurement distance. The

sensor-array motion profiling performance depends on the

Angle of measurement (θ). Soft-Swipe estimates the velocity

by measuring the slope of a plane (say, θ). Figure 4 presents

the velocity estimation accuracy for planes observed from a

vehicle. The slope of these planes are measured by observ-

ing depth difference between consecutive sensors which will

be affected by the noise floor. Therefore, the slope measure-

ment is not accurate for smaller angles. Notably, accuracy

increases with the angle, but the chance of having higher an-

gle planes on vehicle with horizontal spread of inter-sensor

distance is low. The best angular plane observed by the sen-

sor array is the windshield.
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Figure 4: Simulating sensor-array with different angles. The

higher the angle the better the accuracy of slope estimation.

Combining vision and sensor data: Two major conclu-

sions can be obtained from the previous discussion. First,

the accuracies of the sensor-array and the vision system de-

pend on parameters independent of the other system which

change with time. Second, these parameters need to be cali-

brated and studied for accuracy of measurement before using

the system.

Prior approaches in sensor fusion fall into two categories;

(1) Dependent sensory measurements, where multiple sen-

sor measurements are dependent on each other. One exam-

ple is widely used techniques for fusing data from inertial

sensors such as Kalman filter [27] where different observa-

tions (such as accelerometer, GPS) are fused by exploring

the relationship between these measurements. (2) Indepen-

dent sensory measurements, where different sensors sense

for same quantity using independent techniques. One ex-

ample is EV-Loc [55] where location observations from two

sensors (camera and Wi-Fi RSSI) are fused in an adaptive

fashion. Similarly, Foresight [32] combines observations

from different domains based on distinguishability (or re-

liability) in each domain. Soft-Swipe belongs to the second

category where independent measurements from sensor ar-

ray and camera are fused. However, in contrast to the above

schemes, fusing the motion profiles in the context of Soft-

Swipe has additional difficulties due to (1) Dependency on

observable parameters: Errors are dependent on observable

parameters such as distance from the camera and slope of

the plane; (2) Time variant errors: The measurement errors

depend on abovementioned parameters which change with

time. Considering these observations, Soft-Swipe first cre-

ates an association table of observed parameters and error

variance during the training phase. Using this association ta-

ble, Soft-Swipe combines the vision and sensor motion pro-

files by computing the weights for each sample for accurate

fine granular motion profile.

The collaboration between the camera and sensor-array

deployed in each lane is enabled by fusing their independent

velocity measurements adaptively. Let the velocity mea-

sured by camera and sensor arrays be v̂c[t] and v̂s[t] respec-

tively at time t in a given lane, then the velocity estimated

by combining, v̂[t] will be

v̂[t] = wc[t]v̂c[t] + ws[t]v̂s[t], (1)

where wc[t] and ws[t] are the weights of camera and sensor

array measurements, respectively. These parameters quan-

tify the confidence or accuracy of individual measurements.

The camera and sensor measurements can be modeled as

v̂c[t] = vr[t]+ec[t] and v̂s[t] = vr[t]+es[t] where vr[t] is the

real velocity of the vehicle and ec[t], es[t] are measurement

errors of the camera and the sensors respectively. There-

fore, E(ec[t]) = E(es[t]) = 0. Let the variance of ec[t]
and es[t] are σ2

c [t] and σ2
s [t], respectively. Also the weights

must be normalized, therefore ws[t] = 1 − wc[t]. The er-

ror in combining is e[t] = wc[t]ec[t] +ws[t]es[t]. Minimum

mean square error (MMSE) estimation of velocity reduces

to minimizing error variance σ2
e as shown below:

E(e2[t]) = σ2
e [t] = wc[t]

2σ2
c [t] + (1 − wc[t])

2σ2
s [t]. (2)

This mean square error is minimized for

wc[t] =
σ2
s [t]

σ2
s [t] + σ2

c [t]
. (3)

Note the error variances of camera observation σ2
c [t] and

sensor observation σ2
s [t] are functions of observable param-

eters such as angle of plane θ and pixel position [x, y] which

are function of time t. In order to estimate wc[t], above-

mentioned error variances must be associated with param-

eters such as slope of plane etc. This involves modeling

the sensor array and vision systems and manual calibration

for system parameters such as height of camera placement,

angle of camera tilt etc. Large sample sets are needed to

estimate them accurately. Since modeling the system and

observing large sample sets require considerable effort and

manual intervention, we instead automate the system using a

simple yet intelligent learning and estimation techniques as

described below.

Learning Phase: The training set is created and updated in

two phases. First during the training phase, for each lane, the

user performs trial runs to create different possible ([x, y], θ)
pairs and measures v̂c[t] and v̂s[t]. Along with the estimated
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Figure 5: Figure representing data-flow while estimating

weights for MMSE estimation from history table.

velocities the training set contains associated real velocity

vr, which is obtained from the vehicle’s electronic messages.

Second during the test phase, if there is only one vehicle in

the vehicle-station, then the electronic transmissions of cor-

responding vehicle is used to train the system deployed in

its lane. During this test phase, both vehicle transmissions

and sensor observations are added to this set providing a

large training set whose size increases with time. Figure 5

presents these two phases and the table construction. With

this continuous training set, the sample variances σ2
c [t], σ

2
s [t]

are incrementally estimated and an association table is cre-

ated for parameters ([x, y], σ2
c [t]), (θ, σ

2
s [t]). Also a smooth-

ing function is applied on this table to average close obser-

vations creating a continuous trend of variance. Figure 6

Distance from Camera (meters)
0 1 2 3 4 5 6 7 8

V
a
ir

a
n

ce
 (

K
M

P
H

2
)

0

1

2

3

4

Figure 6: Camera speed estimation error variance is plot-

ted with vehicle-position from camera frame over 25 experi-

ments.

presents σ2
c [t] plotted as a function of distance from cam-

era using the history table for 25 experiments. This distance

from camera is mapped to pixel-position using a fixed trans-

formation function obtained during training.

Estimating the velocity: Often vehicles traveling in the

same lane with similar build (e.g., car, truck etc.) have repet-

itive (x, y, θ) values. As a result of this for repeating (x, y, θ),
the variances can be looked up from the table. From the

variance obtained from the look-up tables, the weight ŵc[t]
is estimated using Equation 3 which gives the velocity as

v̂[t] = ŵc[t]v̂c[t] + (1 − ŵc[t])v̂s[t]. The estimated velocity

v̂ at each time t has different measurement errors which must

be considered when computing the motion profile of a vehi-

cle over a time-interval. This measurement error is quan-

tified by the variance of measurement σ̂2[t] =
σ̂2
c [t]σ̂

2
s [t]

σ̂2
s [t]+σ̂2

c [t]

which is derived using camera measurement error variance

σ̂2
c [t] and sensor measurement error variance σ̂2

s [t] obtained

from table look-up using Equation 3.

3.4 Weighted Matching of cross domain motion
signatures

This section describes the matching component of the sys-

tem that matches observations obtained from two domains,

sensors in each lane and the motion profile from vehicles.

In particular, lane observations are matched with electronic

messages from vehicles. The accurate motion profile for

each lane is obtained using the technique described in the

previous section. Similarly, vehicles transmit their motion

profile using electronic messages. Essentially if the observa-

tions get matched to a vehicle, then it is allowed gate access.

If not, Soft-Swipe calls for manual transaction. This sec-

tion first describes the challenges in cross domain matching

followed by presenting a novel metric Weighted Euclidean

Distance quantifying the closeness between cross domain

motion profiles. Using this metric, the rest of the section

presents matching and various decisions derived from it.

Challenges in cross-domain matching: As described above,

the matching is performed between two domains (sets of

data). First, the electronic identities (e.g., IP-Addresses or

MAC-Addresses of smart-phones) is communicated to Soft-

Swipe ’s central server over the wireless medium. These

electronic identities (ei) are associated with their motion pro-

file which is received as a packet stream holding velocity and

time. Also these electronic motion profiles are assumed to

be highly accurate and sampled at a high sampling rate. Sec-

ond, the observations (oj) from the sensors in each lane are

communicated over the wired infrastructure. These observa-

tions will be holding the lane-identity and position (position

in a lane), current time (t), observed velocity of the vehicle

(voj [t]), and the accuracy of observation (σ2
j [t]). Note that the

observed velocity is the adaptive weighted version of vision

and sensor array and is output of the algorithm described in

previous section.

There are two critical challenges in matching electronic

messages with observations. Different accuracies of mea-

surements: The speed estimation accuracy obtained from

an observation change with time depending on different pa-

rameters described in §3.3. If this effect is not considered

then noisy observations at one time instant can render the

accurate observations at other times useless. Defective (or)

tampered equipment: There is no guarantee that the vehi-

cles are transmitting their motion profiles. Lack of electronic

messages from a vehicle can cause errors in matching.

These two challenges make the problem of matching mo-

tion profile distinct from the problems explored in the liter-

ature. Traditionally, Euclidean distance [38] and Dynamic

time warping (DTW) [54] are methods employed for find-

ing the distance between two time series. But these meth-

ods cannot handle the noise or non-uniformity in the mea-

surement errors. Longest Common Subsequence (LCS) is
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proposed to handle possible noise that may appear in data;

however, it ignores the various time-gaps between similar

subsequences, which leads to inaccuracies. Considering this,

Soft-Swipe first defines a weighted version of Euclidean dis-

tance referred as Weighted Euclidean Distance to compute

the similarity between two time series which can handle noise.

Then, Soft-Swipe uses the above metric to match vehicles

with respective observations.

Weighted Euclidean Distance: Non-uniformity in mea-

surement accuracies is addressed by giving weights to the

observations based on accuracy. To derive weights based on

accuracy (variance of observation), consider an observation

oj with motion profile spanning in a time window [T o
j , T ]

containing Mj samples. This motion profile represents a

point in Mj dimensional space. Let us define Weighted Eu-

clidean Distance(D = Σt=T
t=T o

j
wj [t]

2(v̂oj [t]−voj [t])
2) between

two motion profiles as square of distance between two points

in the multi-dimensional space, where each dimension is

scaled by a weight. These weights (wj [t]) are chosen such

that the distance between motion profile of oj and its ac-

curate measurement (v̂oj [t] obtained by electronic messages)

must be minimum. In such a case, the distance D is same as

mean square error due to measurement noise (discussed in

§3.3) and can be formulated as given below

E(Σt=T
t=T o

j
wj [t]

2(v̂oj [t]− voj [t])
2) = Σt=T

t=T o
j
wj [t]

2σ2
j [t]. (4)

Also the weights must be normalized over time. Therefore

the objective function D which can be formulated as:,

minimize
wj [t]

Σt=T
t=T o

j
w2

j [t]σ
2
j [t]

subject to Σt=T
t=T o

j
wj [t] = 1.

From Cauchy-Schwarz Inequality,

Σt=T
t=T o

j
w2

j [t]σ
2
j [t]Σ

t=T
t=T o

j

1

σ2
j [t]

≥ (Σt=T
t=T o

j
wj [t])

2 = 1. (5)

Therefore,

Σt=T
t=T o

j
w2

j [t]σ
2
j [t] ≥

1

Σt=T
t=T o

j

1
σ2
j
[t]

. (6)

The above minimization function is optimized forwj [t]σ
2
j [t] =

K ∀t ∈ [0, T ] where K is constant.

The optimal weights can be estimated from the variances

of each observation as wj [t] =

1

σ2
j
[t]

Σt=T
t=To

j

1

σ2
j
[t]

The computed

weights are based on accuracy of measurement as the weight

is inversely related to the variance of the observation. Fur-

ther for a significantly large number of samples, the distri-

bution of D can be approximated as a normal-distribution

with mean of µDj = 1
Σt=T

t=0
1

σ2
j
[t]

, with variance of σ2
Dj =

Σt=T
t=To

j
σ2
j [t]

Σt=T
t=To

j

1

σ2
j
[t]

. This distribution of D for observation oj is used

to detect corresponding electronic match.

Matching and Fault Detection: Soft-Swipe considers

observations that have crossed a threshold length for match-

ing (15 to 20 seconds is found to be optimal in our experi-

ments). With this data, matching happens in a time slotted

fashion, and all the observations crossing this threshold in

the current time slot are matched in the next time-slot. Also

time-slot length is chosen to be much larger than threshold

length.

In order to perform matching, the user defines a parameter

c (Match Confidence) lying between 0 and 1. Matching for

an observation oj , is performed using the abovementioned

weights and c. Then Soft-Swipe computes Weighted Eu-

clidean Distance D[i, j] for every observation oj and elec-

tronic identity ei to determine the following:

• If ei is a correct match for oj , then the distance D[i, j]
is the smallest ∀i and D[i, j] is in high confidence re-

gion of normal distribution. (Match)

• If oj has no correct match, then the distances D[i, j]∀i
are not in high confidence region of normal distribu-

tion. (Fault, blocked for manual processing.)

• If ei has not matched with any oj∀j, then ei is carried

over to the next time slot. (Vehicles yet to enter the

station.)

4. IMPLEMENTATION

In this section we outline our system implemented in ve-

hicular manufacturing and testing station.

Vision system: Our vision system is implemented in

C++ using open source computer vision libraries (OpenCV)

which captures real-time video feed and finds good features

in the frame that can be used to track a vehicle (described

by Shi et al. [43]). These features typically include cor-

ners, boundaries of a vehicle etc. Once these features are

extracted, the vision system checks how these features have

moved across consecutive frames in order to measure their

shift. These shifts are observed in terms of pixels per unit

time and referred as optical flow vectors in computer vision

literature [10, 20]. The optical flow vectors from different

feature points on the vehicle are aggregated to obtain the ve-

hicle’s velocity in the camera plane. Next, a noise-filter is

created to filter out the optical flow vectors that are below a

threshold and not in the directions of vehicular movements.

This threshold is determined during the initial calibration

runs. Also, the pixels that do not corresponds to any lane

can be removed by using image segmentation (segmenting

the image corresponding to lane). Small changes in light-

conditions, reflections from moving object on the ground

and background human movements create optical flow vec-

tors with much smaller magnitudes and in different direc-

tions compared to optical flow vectors of a moving vehicle

and are filtered out.

The vision system was implemented using a commodity

Logitech Quick-cam pro camera and was mounted 2 me-
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ters over the ground level. Additionally, we have experi-

mented with Belkin NetCam HD+ and other off-the-shelf

digital cameras. The camera must be mounted at a signifi-

cant height in order to ensure coverage and to approximate a

vehicle’s motion to a straight line in the camera plane.

The vision system assumes that a vehicle is a solid object

and therefore, the system is not trained to look for specific

visual features (such as shape of the car, car logo etc.). Fea-

ture based vehicle detection and tracking mechanism (where

the vehicle can be classified as car, truck etc.) can certainly

be layered on Soft-Swipe . Also, the visual-features (de-

scribed by Li et al. [32]) could be used for matching. How-

ever, these visual-features cannot distinguish identical vehi-

cles. Soft-Swipe , on the other hand, gives accurate matching

without depending on vehicle-specific properties.

Sensor array: The Sensor array is deployed using four

ultrasonic sensors [8], which are controlled by Arduino Yun [11]

controller as shown in Figure 7. The inter-sensor distance

is 30 cm and covers only 90 cm of the vehicle service sta-

tion. The Sensor array measures the depth at a constant rate

of 20 per second and these measurements are processed by

Arduino to obtain parameters such as slope or velocity of a

vehicle etc. First, the presence of a vehicle is detected by

recording the number of sensors triggered at a given time in-

stance. Other triggers (such as caused by a walking person)

will usually trigger a small set of sensors and can be ignored.

Then the measured velocities along with the parameters are

sent to the central server (implemented in a Laptop) using

serial communication.

Motion profiles from vehicles are collected by connecting

a smart-device with OBD-II system. Adaptive weight and

matching components are implemented in Matlab R2015a

where the data from vision-system, serial port communica-

tion (Arduino) and vehicle smart-device are fetched and pro-

cessed. The above implementation uses commodity sensors

with an average cost of 250 USD per lane. Large-scale pro-

duction of the system might cost much lower than presented

costs.

Depth Sensors Arduino microcontroller Depth Sensors ep S

4-Sensor-fence 

Figure 7: Sensor fence deployed with four ultrasonic sen-

sors.

5. EVALUATION

This section evaluates the motion profile accuracy of vi-

sion system, sensor array and Adaptive weight algorithm.

Then, different metrics for evaluating Soft-Swipe are pre-

sented and evaluated with extensive real world experiments.

5.1 Motion-Profile Accuracy

Vision system performance : Our vision system is ro-

bust to background noise and estimated speed with an over-

all standard deviation of 2 kmph and less than 0.5 kmph with

a large training set as shown in Figure 8 (i). In evaluating

vision-system we observed a variable accuracy achieved in

speed sensing. This can be explained as follows, Soft-Swipe

calibrates the pixel speed from raw frames and converts this

pixel speed to true speed by multiplying with a scaling value.

This scaling value is derived for each pixel position during

initial training runs. Each training run gives scaling values

for a few pixels in the frame. However, during system usage,

the closest pixel position with a known scaling value is used

in that case.

Sensor-fence performance:We have evaluated the 4-sensor

array described in §4 by measuring speed measurement ac-

curacy. Figure 8(b) (blue bars) plots the speed measurement

accuracy. We observe that the measurement error increases

with the speed of measurement. To analyze the trend we

have simulated the sensor system by feeding traces contain-

ing dimensions of different vehicles and vehicle mobility

traces. Figure 8(b) (red bars) plots the accuracy obtained

from simulation. Simulation results showed significant per-

formance for higher velocities. This is due to the higher

number of sensors needed for capturing higher velocities.

The sensor-fence performance depends mainly on the angle

of plane as described in sensor fence section. But with lim-

ited number of sensors (in experiments 4 were used), the

chance of capturing higher-slope planes is less as compared

to a long chain of sensors (in simulations).

Adaptive weight algorithm performance: We evaluate

the benefits of combining the motion profiles obtained from

the vision and sensor systems by using the adaptive weight

algorithm. Figure 9 plots the motion profile using vision,

sensor array and adaptive weight algorithm. The adaptive

weight algorithm produces less noisy and more accurate mo-

tion profile by combining information from both the vision

and the sensor array components. We have also experimented

with several naive smoothing algorithms to reduce noise in

the process of combining information. But these algorithms

miss the sharp peaks in the motion profile (sudden stops, ac-

celeration etc) and therefore are not suitable for dynamic ve-

hicular speeds. For a set of 30 experiments, Adaptive weight

algorithm reduced error by 50% (i.e., nearly 1kmph) com-

pared to vision system and 55% (i.e., nearly 1.2kmph) as

shown in the Figure 8(c).

5.2 System Performance

This section first presents the metrics involved in evalu-
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ating Soft-Swipe system. Then, the experimental setup for

evaluation is presented, followed by a discussion on results

and observations.

Evaluation metrics: To examine the benefits of the match-

ing algorithm, we evaluated the system for following met-

rics. (a) Precision (p), Recall (r) and F-Score (f): Precision

gives the ratio of number of correct matches to the total num-

ber of matches produced by the algorithm. Recall gives the

ratio of number of correct matches produced by the algo-

rithm to the total number of correct matches (ground truth).

F-score (F1-score) is the commonly used statistical metric

quantifying accuracy of matching, considering both p and r.

Precision, recall and F-Score are standard metrics defined for

matching [36]. In addition, we define the following metrics

from the users point of view which are important for different

toll based applications. (b) Identity-Swap: The probability

of swapping identity between vehicles. Its the ratio of false-

positives to the total number of times an observation (user)

participates in the matching. Note this is always less than

1 − p, as 1 − p is the ratio of false-positives to total number

of times an observation is matched. This metric quantifies

the probability that a user pays someone else’s toll and still

got the gate access. This metric is essential for drive-thru

and other service based transactions as this metric quanti-

fies the incidence of swapped transactions. (c) False-stop:

The probability of having a wrong match or no match for a

given observation. This includes observations that are con-

sidered to have a wrong match (false negatives) as well as

no matches and is therefore always greater than 1 − r. (d)

Miss-Rate: It is the probability of detecting an observation

without electronic transmissions (rogue-vehicle). This met-

ric quantifies the probability of having gate access without

performing electronic pairing and therefore, is essential for

toll based applications.

Experimental setup: First a huge number of single lane

experiments are conducted with controlled variation of traf-

fic pattern, just like typical class I and class II applications.

Note these applications can often have multiple lanes for re-

ducing wait times. Since building the system for multiple

lanes experimental setup is cumbersome, we have designed

an emulator which simply replays different or same exper-

iments across different emulated lanes. Therefore, vehicles

across different lanes can have same motion profiles. Then

multi-lane experiments are created with varying lane-count

ranging from 1 to 5. Additionally the system receives motion

profiles from 7 exterior electronic transmissions (vehicles

yet to enter the station but transmitting the motion-profile).

For all the experiments the user defined parameter c is set

to 0.99. For evaluating the miss rate, out of the vehicles in

the station, one vehicle is assumed rogue, which does not

transmit the motion profile. Then the system is evaluated for

detecting this rogue-vehicle.

Results and observations: Figure 10 depicts the results

observed from the abovementioned experiments. From these

results, we observe the following general trends: Precision

increased with number of lanes and swap-rate decreased

with lanes. This trend in precision is mainly attributed to

reduction in noise (noise-vehicle transmissions) per lane. In-

crease in precision rate also results in lower swapping rates.

Recall decreased with number of lanes and False-stops in-

creased linearly with number of lanes. With more num-

ber of lanes, the fraction of noise-vehicles (vehicles yet to
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Figure 10: Weighted matching algorithm is evaluated for different metrics using vision-only, sensor-fence, and Adaptive

weight(AW) algorithm.

enter station) reduces leading more vehicles considered as

match. Increase in Recall reduces the precision. When re-

call is high, the lower precision will result in some vehicles

to be stopped for traditional processing (perhaps with man-

ual intervention). We observed miss-rate can be reduced fur-

ther by increasing the confidence (c) defined in §3.4, but this

will reduce the recall leading to valid pairs being eliminated

as a miss (rogue-vehicle). This implies the lower the miss-

rate, higher the chance of valid vehicles being considered as

a miss (rogue-vehicle). Also, by reducing the c, recall can

be increased, but this reduces the precision.

6. RELATED WORK

Soft-Swipe enables accurate pairing between a vehicle and

the infrastructure by exploiting motion signatures of the ve-

hicle at a particular location. Our work is primarily related

to following three lines of research.

(i) Motion signatures for identification: [51] exploits

visual and discrete motion sequences for identifying the hu-

man visually. These position sequences cannot be used to

distinguish vehicles as all the vehicles move in the same di-

rection and may have identical visual features. [32] uses po-

sition and color to identify vehicles and enable unicast. But

position from GPS cannot resolve the vehicle to its respec-

tive lane. Also, multiple vehicles can have the same color

(e.g., very common in automobile manufacturing plants).

[48, 47] uses motion signatures of vehicles observed by a ve-

hicle using its on board sensors such as camera and RADAR

to identify neighboring vehicles. In order to enable pair-

ing between vehicles, distinguishable signatures must be ex-

tracted with high accuracy, which cannot be achieved by

above works.

(ii) Location signatures: Location based signatures are

widely explored in the context of NFC, wireless localization

and wireless security. The ambient sensors available on the

mobile phones such as audio, light, GPS, Wi-Fi, Bluetooth,

and thermal are used to create location specific signatures to

authenticate [25, 24, 49, 33]. [52] defines motion-signatures,

which can be captured by inertial-sensors on mobile phones

to provide indoor localization service. [22] have presented

techniques to track the user exploring the motion signatures.

[15] explores Wi-Fi and Bluetooth RSSI signatures to sense

the context of a user. However, Wi-Fi based signatures are

heavily time varying in dynamic environments and difficult

to sense.

(iii) Vehicle speed sensing and Matching: Prior works

have explored road-side camera [23, 41], Soft-Swipe uses a

novel algorithm for dynamic speed estimation of a vehicle

using both vision and depth-sensor array. Speed estimation

algorithm from vision proposed in Soft-Swipe is similar to

works on speed estimation from road-side cameras [23, 41].

Soft-Swipe first estimates shape of a moving vehicle using

depth sensor array hung from the ceiling. Then, movement

of this object across sensor-array length is used to estimate

the vehicle speed. The problem of estimating the shape of

a vehicle has similarities with the problem of object con-

struction from 3D points [40], but Soft-Swipe exploits the

2-Dimensional nature of the speed estimation problem and

includes a novel lightweight algorithm for shape and speed

estimations.

(iv) Sensor fusion: Prior works [55, 32] have explored

the weight adaptation algorithms by using variances of ob-

servations. However, we showed that these variances do

not remain constant in the context of vehicular speed sens-

ing based applications. Realizing this non-uniformity in the

variances, we have proposed a learning based Adaptive weight

algorithm to combine motion signatures from multiple modal-

ities by computing weights for each sample.

7. FUTURE WORK

The following three ideas related to motion-signatures for

enabling general pairing mechanisms in the context of ve-

hicular communications are worth exploring.

(i) Enhancing motion signatures for intra-vehicular pair-
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ing: Soft-Swipe exploits motion signatures to securely pair

vehicles with the infrastructure. This idea can be extended

for pairing intra-vehicular systems in smart-vehicles. Intra-

vehicle systems include multiple mobile phones, tablets, nav-

igation system, cruise control, heating etc. These systems

can continuously observe the motion profile, which can be

used as a secret key to pair these systems. (ii) Enhanc-

ing motion signatures with vehicle localization: To in-

crease the accuracy of matching, other coarse localization

technique such as based on RSSI of the RF signal can be

used. The RSSI can be used to limit the set of vehicles to

match a particular lane, leading to higher accuracy of match-

ing. (iii) Enhancing motion signatures with Tagging In-

frastructure: The infrastructure can be tagged or planted

efficiently to encode lane specific information. One simple

mechanism to encode lane identity is by using minor ob-

stacles such as bumps and potholes. This information can

be observed by vehicles inertial sensors and can be used to

identify a lane and its corresponding position. Information

encoding can be performed by using constructions such as

left-obstacle, right-obstacle, complete-obstacle etc. and us-

ing multiple such obstacle.
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