
Efficient Architecture Support for
Region-Serializability-Based Consistency

Swarnendu Biswas
University of Texas at Austin

sbiswas@ices.utexas.edu

Rui Zhang
Ohio State University
zhang.5944@osu.edu

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Brandon Lucia
Carnegie Mellon University

blucia@cmu.edu

Ohio State CSE Technical Report #OSU-CISRC-4/17-TR01

ABSTRACT
Shared-memory systems provide strong, well-defined seman-
tics only for data-race-free executions. This paper proposes
a new architecture design called ARC that provides strong,
serializability-based semantics for all program executions,
without restricting compiler or hardware optimizations. ARC
employs a novel mechanism in which a core’s region exe-
cutes largely in isolation from other cores; ARC checks the
region’s consistency with the shared cache only at region
end and private cache evictions. Unlike prior work that de-
tects region conflicts, ARC does not serialize region commit,
communicate with other cores to commit a core’s region, or
piggyback on M(O)ESI cache coherence.

An unoptimized design of ARC can incur high time and
traffic overhead by checking consistency and ensuring coher-
ence conservatively; we introduce optimizations that soundly
eliminate much of this work and reduce costs substantially.
Our evaluation shows that the resulting design compares fa-
vorably, in terms of execution time and on- and off-chip
traffic, with prior work that provides the same consistency
model or implements transactional memory. ARC’s novel
mechanism avoids the high costs and scalability bottlenecks
incurred by prior work’s mechanisms. ARC thus advances
the state of the art in providing strong memory consistency.

1 Introduction
Shared-memory multiprocessors offer a simple, efficient ex-
ecution model in which multiple software threads execute
on processor cores that share a global memory. In shared-
memory systems, data races are a fundamental barrier to
the correctness of software. A data race occurs when two
threads access the same shared memory location—and at
least one access is a write—without using synchronization
to order their accesses [6]. Data races are a problem because
existing programming languages and architectures perform
optimizations that assume data race freedom, resulting in
complex or undefined semantics for executions with data
races [2, 8, 23, 72, 90, 95, 101]—leading to unexpected, erro-
neous behaviors [2, 21, 22, 24, 25, 68].

The key to dealing with data races is providing a mecha-
nism for detecting conflicting1 memory accesses that is both
efficient and precise. Efficient system support for a mecha-
nism that detects or resolves conflicts—which this paper calls
a consistency mechanism—is essential for providing com-
prehensible language specifications [2, 16, 30, 69, 74, 91, 97].
Efficient consistency mechanisms are also critical for en-
abling execution models such as transactional memory [9, 32,
50, 51, 53, 85] and system support such as concurrency bug
detection [38,46] and deterministic execution [11,36,56,105].
Despite the wide-ranging value of consistency mechanisms, a
precise, efficient, and practical design has eluded prior efforts
(Sections 2 and 6).

This work describes a new, generally applicable, efficient
consistency mechanism. We illustrate the value of our con-
sistency mechanism by applying it to a new architecture
design called ARC2 that precisely detects conflicts between
unbounded regions of a program’s dynamic execution. ARC
supports the SFRSx memory model [16, 69], which ensures
that synchronization-free regions (SFRs) execute serializably
or terminates the execution with a consistency exception that
indicates the presence of a data race. It is a key contribution
of this work to provide a mechanism that efficiently supports
the strong SFRSx memory consistency model.

ARC’s consistency mechanism isolates a region of an exe-
cution on one core from the other cores, mostly avoiding the
need to send information about which data a region accessed
to other cores and the shared cache. When a core’s region
ends, the core ensures that the region’s execution saw con-
sistent data and produced consistent results by committing
the region’s writes atomically and validating that the values
read by the region are consistent with the values in the LLC.
When a core evicts a line from a private cache to the LLC, it
checks the line for consistency with the LLC and delegates
further consistency checking for that line to the LLC.

When a region ends, a basic design of ARC must check the

1Two memory accesses to the same location conflict if they are
executed by different threads and at least one is a write.
2ARC is an acronym for Architecture for Region Consistency.

1

consistency of all data accessed by the region and invalidate
all privately cached lines to provide coherence. This basic
design can incur high overhead, particularly when regions
are short. We introduce optimizations that soundly eliminate
most of this cost by identifying and avoiding unnecessary
consistency checks and invalidations. ARC’s design and
optimizations are inspired in part by prior work on distributed
shared memory (DSM) systems [3, 12, 18, 29, 44, 48, 61]
and simplified cache coherence mechanisms [33, 40, 60, 87,
102, 103]. The key distinction with ARC is that the prior
work assumes data race freedom, while ARC’s consistency
mechanism provides guarantees for all executions.

ARC places few constraints on an implementation in hard-
ware. ARC does not require a M(O)ESI cache coherence
protocol, a cache coherence directory, or a direct core-to-core
communication channel. Instead, ARC adds distributed con-
sistency controller (CC) logic, per-byte access information
to caches, and requires backing memory to store access infor-
mation in case of LLC evictions. A banked cache of access
information co-located with the LLC avoids memory lookups
for an acceptable area and power overhead. ARC’s CC logic
is an unlikely performance bottleneck: CCs are distributed
and partitioned per-core, allowing different cores’ actions to
proceed in parallel without core-to-core communication. Our
ARC design targets the majority of commercially available
CMPs with moderate core counts (≤32). CMP architectures
with large core counts (>32) are out of the scope of this work
because the memory overhead to back up access information
scales with core count. Multi-socket designs are also out of
this paper’s scope and ARC is designed for a single socket.

We evaluate ARC and compare to the consistency mech-
anisms from (1) Conflict Exceptions (CE) [69], which like
ARC provides SFRSx, and (2) Transactional Coherence and
Consistency (TCC) [50] adapted to ARC. Like ARC, TCC
eschews M(O)ESI-style coherence, instead providing both
consistency and coherence at region boundaries. ARC has
run-time performance on par with a typical MESI system
and with CE, and modest on-chip network and off-chip mem-
ory system traffic overheads that are substantially lower than
CE’s. In contrast with ARC, TCC’s mechanism to deal with
unbounded regions must frequently serialize cores’ execution
even at modest core counts. Crucially, ARC avoids critical
communication and serialization issues faced by CE and TCC
across a range of realistic core counts. Our results show that
ARC advances the state of the art in architecture support for
memory consistency.

2 The Need for New Consistency Mechanisms
Mainstream shared-memory systems do not detect or resolve
conflicts between unbounded, concurrently executing code
regions—support for which we call a consistency mechanism.
Consistency mechanisms handle conflicts between concur-
rently executing regions of code, making them useful for
transactional memory [9, 32, 50, 51, 53, 85] and strong mem-
ory consistency models [2,16,30,69,74,91,97], as well as for
system support such as error checking [38, 46] and determin-
ism [11, 36, 56, 105]. Our work develops a new consistency
mechanism; we illustrate its value by using it to support a
strong, end-to-end memory consistency model, the need for
which we discuss next. Section 2.2 describes several existing

consistency mechanisms and their limitations, revealing the
critical gap that our work fills.

2.1 Motivating Strong Memory Consistency
The specifications of shared-memory languages including
C/C++ and Java are based on DRF0, which allows compilers
and hardware to optimize code assuming no conflicts be-
tween synchronization-free regions (SFRs) [2, 5, 23, 72]. An
SFR is a sequence of per-thread dynamic instructions delim-
ited by synchronization operations including acquire/release,
fork/join, and wait/notify operations (shown in Figure 1). As
a result of this data-race-free assumption, shared-memory
systems provide well-defined behaviors only for executions
without data races. For such data-race-free executions, DRF0
guarantees sequential consistency (SC) [64] and serializabil-
ity of SFRs [2, 5, 69], meaning that SFRs appear to execute
atomically and in program order.

However, for executions with data races, DRF0-based lan-
guage specifications provide weak or undefined semantics.
In C/C++, data races have undefined semantics [2, 21, 23].
Java’s memory model preserves memory and type safety in
the presence of data races [72] but precludes common com-
piler optimizations [25, 94]. Hardware memory models such
as TSO [95, 101] are generally stronger than DRF0-based
language models, but they lack end-to-end guarantees.

Data races remain a real challenge in spite of much ef-
fort [1, 15, 26, 27, 34, 39, 41–43, 45, 59, 65, 73, 80, 81, 84, 99,
106, 107]. A data race’s occurrence is environment, input,
and timing sensitive [43, 49, 59, 99].

SFR-serializability-based consistency. Researchers have
proposed support for end-to-end serializability of SFRs for
all executions [16, 69, 83]. SFR serializability is appealing
because it extends the same guarantees to executions with
races that DRF0 provides only for race-free executions. Un-
der SFR serializability, the compiler and hardware are free
to optimize within SFRs. In contrast, enforcing end-to-end
sequential consistency (SC) [4, 47, 66, 67, 75, 86, 96, 98, 104]
or serializability of bounded regions [7, 30, 70, 74, 92, 97]
requires restricting compiler and hardware optimizations. Ar-
chitecture support alone can ensure SFR serializability, since
compiler optimizations already respect SFR boundaries.

Prior work introduces consistency mechanisms to support
a memory model called SFRSx that guarantees SFR serial-
izability or generates a consistency exception [16, 69]. An
SFRSx execution has the behavior of a serialization of SFRs
or terminates with a consistency exception, indicating a con-
flict between SFRs, which must be because of a true data race.
SFRSx makes software safer by limiting the effects of data
races, and helps debug data races by making them a fail-stop
condition. Figure 1 shows an execution with data races on
two shared variables, x and y. An implementation of SFRSx
need not generate a consistency exception for the read of x
because the SFRs accessing x do not overlap. In contrast, the
SFRs accessing y overlap, so SFRSx generates an exception
because the execution may violate SFR serializability (e.g.,
suppose Thread 1’s SFR later writes x or y).

In this work, we support SFRSx using ARC’s novel archi-
tectural consistency mechanism.

2

Thread 1 Thread 2

rd x

consistency
exception

lock(n)

unlock(n)

wr x

lock(m)

wr y

rd y

no consistency
exception

S
FR

S
FR

S
FR

S
FR

S
FR

rd z

Figure 1: Under SFRSx, an execution generates an excep-
tion for a data race that may violate SFR serializability.

2.2 Existing Consistency Mechanisms
Although researchers have introduced consistency mecha-
nisms that detect and resolve conflicts between unbounded
regions, these mechanisms generally require broadcasting
access information among cores or incur other serious limi-
tations, leading to high run-time and on- and off-chip traffic
costs. ARC’s novel consistency mechanism addresses these
limitations through a fundamentally different design.

Support for SFRSx. Existing systems provide SFRSx but
with significant drawbacks. Valor provides SFRSx in soft-
ware alone but slows executions by almost 2X on average [16].
Conflict Exceptions (CE) adds hardware on top of a MOESI
cache coherence protocol to detect SFR conflicts, and re-
lies on the protocol’s eager messaging to exchange access
metadata [69]. CE also generates prohibitively high on-chip
memory traffic (Section 6.2.3) to broadcast access informa-
tion to other cores at region boundaries.

Hardware transactional memory. HTM is a general mech-
anism for providing speculation-based, serializable execution
of code regions [53,55]. HTM detects conflicts between code
regions executing as transactions, and aborts and re-executes
one or both transactions. HTM systems can use imprecise
conflict detection, while SFRSx requires precise conflict de-
tection; HTM must keep original copies of speculatively
written data, in case of misspeculation.

Most HTMs build on M(O)ESI cache coherence protocols
to detect and resolve conflicts [9,19,20,78,109,110]. The key
challenge encountered by these designs, if they support un-
bounded transactions, is handling overflow of a transaction’s
working set from the private cache(s) to the shared, last-level
cache (LLC), since conflicts on non-privately-cached data
do not generate coherence events. Unbounded HTM designs
incur substantial cost and complexity to maintain state for
overflowed bits and detect conflicts as they occur. For exam-
ple, LogTM extends the directory with “sticky” coherence
states for lines in order to detect conflicts on lines that over-
flow a transaction [78].

Other HTMs reduce costs and complexity by supporting
only bounded transactions, e.g., aborting transactions that
overflow private caches [55, 110]. To support unbounded
transactions, these HTMs require a software TM (STM) fall-
back [10, 28, 62, 77].

Transactional Coherence and Consistency (TCC) is an ar-
chitecture design for HTM [50] that, like our ARC design,
forgoes a directory and M(O)ESI coherence, and instead pro-
vides coherence and consistency at region boundaries [50].

TCC broadcasts a transaction’s write set at the end of the
transaction to detect conflicts. Follow-up work to TCC shows
how to alleviate this operation’s inefficiency by using a di-
rectory [32] and introducing parallel commit [85]. Despite
these optimizations, TCC is fundamentally limited by its use
of bounded write buffers. When a transaction overflows a
buffer, the executing core must execute non-speculatively,
with exclusive commit access from the point of overflow to
the end of the transaction [50,53]. Non-speculative, exclusive
execution impedes TCC’s parallelism and performance, as
we show in Section 6.4.

Like TCC, BulkSC executes regions transactionally, using
conflict detection to enforce coherence and consistency [30,
31]. BulkSC’s conflict detection mechanism works by broad-
casting a completing region’s write set as a signature. BulkSC’s
regions are inherently bounded by its use of (imprecise) sig-
natures; to ensure progress, BulkSC dynamically subdivides
regions, precluding its application to a model with statically
defined regions such as SFRSx or transactional memory.

3 Design Overview of ARC
This paper introduces ARC (Architecture for Region Consis-
tency), an architecture that ensures serializability of execut-
ing regions using a novel consistency mechanism. In ARC’s
consistency mechanism, each core executes regions mostly
in isolation, performing coherence and consistency actions
only at region boundaries and private cache evictions. When
a core’s region ends, the core ensures consistency by com-
mitting its writes atomically and validating that the values
read by the SFR are consistent with the values in the shared,
last-level cache (LLC). The core ensures coherence by in-
validating all of its privately cached lines. When a region
suffers a capacity or conflict miss, the core delegates further
consistency checking for that line to the LLC.

ARC applies its consistency mechanism to providing the
SFRSx memory model. ARC requires minimal compiler
support to identify synchronization operations, but does not
restrict compiler optimizations within regions.

This section gives an overview of ARC’s design and how
ARC meets its goals. Sections 4 and 5 describe an architec-
ture that implements ARC and several optimizations.

State. ARC inherently must support byte-granular tracking,
which is essential for the precise conflict detection needed for
SFRSx. Cores’ private caches and the shared cache (LLC)
track access information for each byte in a cache line that
represents whether the byte has been read and/or written by
a core’s ongoing SFR. The LLC needs to maintain access
information for lines evicted from a core’s private cache3 to
the LLC. Each shared cache line maintains a version, which
is a number incremented each time the line is written back
to the LLC. Only the LLC updates a line’s version, which
represents the logical time of the latest write-back to the line
in the LLC. Each private cache line maintains a copy of the
shared line’s version, for use in validating reads from the line.

Actions at reads and writes. When a core reads or writes
a byte of memory, it updates the access information (read or
3For simplicity of exposition, this section abstracts a core’s L1 and
L2 caches as a single private cache. In Section 4’s architecture
design, each core has L1 and L2 private caches.

3

write bit) for the accessed byte in its private cache. Note that
a region’s read or write does not trigger any communication
with the LLC or other cores, regardless of whether the LLC
or other cores’ caches have valid copies of the line.

If a core evicts a line that has access information, the core’s
private cache writes back the access information to the LLC,
along with the line data if the line is dirty. The LLC uses the
access information to detect conflicts with other cores that
have evicted the same line. It saves the access information
at the LLC to detect conflicts with other cores when they
validate reads, commit writes, or evict lines to the LLC. Note
that when a core evicts a private line, the core and LLC do
not communicate with other cores.

Actions at SFR boundaries. When a core’s region ends, it
ensures serializability by validating its reads and committing
its writes atomically, using a region commit protocol that
consists of the following three operations in order:

(1) Pre-commit: The core sends its write access information
to the LLC, which checks for conflicting access bits for the
same byte in the LLC, which indicate a conflict (in which case
ARC generates a consistency exception). The LLC maintains
the core’s write access information during the next step, read
validation, to ensure the atomicity of validating reads together
with committing writes.

(2) Read validation: The core needs to validate that the values
it read are consistent with the LLC’s current values. Sending
data values would generate a lot of traffic—and comparing
values alone would be unsound, by not validating with respect
to a single LLC snapshot. ARC avoids these pitfalls with a
combination of version and value validation.

Algorithm 1 shows how read validation works. For each
private cache line to be validated, the core sends the line’s
version to the LLC for comparison. For simplicity, the algo-
rithm depicts a synchronous reply for each validation request;
in fact, the LLC can reply asynchronously, and it need not
reply at all if the versions match (Section 4).

A version mismatch indicates a write to the same line
but not necessarily the same bytes that the validating core
has read. The core handles a version mismatch by checking
that the data values that it read match the current values in
the LLC (using the LLC’s data values, sent in the LLC’s
response). The core also ensures the absence of a write–read
conflict by checking that no locally read byte has its write
bit set in the LLC (using the LLC’s write bits, sent in the
LLC’s response). If either check fails, the core generates a
consistency exception. The core updates the line’s version to
the new value, to avoid the same mismatch when validation
retries. A core may repeatedly retry read validation and expe-
rience starvation, but ARC is livelock and deadlock free: a
version mismatch means that some other core made progress
by writing to the LLC.

(3) Post-commit: The core writes back dirty bytes to the LLC
and clears its private access information. The LLC clears all
of its access information for the core. In addition, the core
must invalidate all lines in its private cache, to ensure coher-
ence at SFR boundaries. This self-invalidation step degrades
locality, especially for short regions; Section 5 introduces
optimizations that reduce self-invalidation costs.

Algorithm 1 A core performs read validation
1: repeat
2: mustRevalidate← false
3: for all private cache lines L with a read-only byte do
4: let v← getVersion(L)
5: Send L’s address and v to LLC
6: resp← LLC’s response . resp is ⊥ or 〈v′,w′,d′〉
7: if resp 6= ⊥ then
8: 〈v′,w′,d′〉 ← resp . LLC line’s version, write bits, & data values
9: mustRevalidate← true

10: d← getData(L)
11: if d′ 6= d ∨ . Compares read-only bytes only

w′ ∩ getReadBits(L) 6= /0 then
12: Consistency exception!
13: end if
14: setVersion(L,v′)
15: end if
16: end for
17: until not mustRevalidate

We note that, unlike some other consistency mechanisms such
as TCC’s [50] (Section 2.2), the region commit protocol for
a core can proceed in parallel with other cores performing
the region commit protocol or executing regions. To see why
the region commit protocol need not be serialized, consider
the following two insights. First, the core and the LLC do
not communicate with other cores’ caches during the region
commit protocol. Second, the region commit protocol ensures
atomicity of a core’s writes and reads by setting a core’s write
bits in the LLC for the duration of the region commit protocol.

Write-after-read upgrades. ARC’s use of value validation
requires careful handling of write-after-read (WAR) upgrades.
A WAR upgrade happens when a core writes a byte that it
read earlier in its ongoing region. Simply overwriting the
byte in the private cache line would make it impossible to
value-validate any read performed earlier in the region. ARC
thus sends an upgraded line’s read access information and
version to the LLC, before the write happens. The LLC
immediately read-validates the line and detects future read–
write conflicts for the line (similar to how private cache line
evictions are handled). As Section 4 describes, the ARC
architecture avoids communicating with the LLC for WAR-
upgraded L1 lines, by preserving an unmodified copy of the
line in the L2.

4 Architecture Design of ARC
The ARC architecture is a collection of modifications to a
multi-core processor. In the base architecture (i.e., with-
out ARC’s modifications), each core has a cache hierarchy
with private, write-back L1 and L2 caches; cores share the
last-level cache (LLC); and there is no support for cache
coherence. Each cache line has only a valid bit and a dirty
bit. The private caches are inclusive and the LLC is not inclu-
sive. Figure 2 shows the components that ARC adds to the
processor: (1) access information storage and management
and (2) a distributed consistency controller (CC).

4.1 Private Access Information Management
Each core maintains access information for each of the lines
in its private caches, as Figure 3 shows. Each L1 and L2
line has a 32-bit version that ARC uses to detect consistency
violations. ARC associates two bits per byte with each line

4

Core 1

L1

L2

Core 2

L1

L2

Core n

L1

L2

Main memory

access metadata

Access information
buffer

LLC
AIM

. . .
CC CC CC

CC
(Core 1)

... CC
(Core n)

Figure 2: The ARC architecture (not according to scale).
The parts shaded gray are hardware structures added by ARC.
The consistency controller (CC) is distributed across the ar-
chitecture.

byte
offset iversion dirtyV/I ...R W

Figure 3: Per-line metadata introduced by ARC for pri-
vate caches. Metadata added by ARC is shaded gray.

in the core’s L1 and L2 caches. A byte’s read bit indicates
that the byte was read, without first being written, during the
current SFR. A byte’s write bit indicates that the byte was
written during the SFR.

Updating access information. When a core writes a byte,
it sets the byte’s write bit if it is not already set. When a core
reads a byte, it sets the byte’s read bit only if the byte’s read
and write bits are unset.

A write-after-read (WAR) upgrade occurs when a core
writes an L1 byte that was previously read in the same region.
ARC must preserve a WAR-upgraded byte’s original value for
use during value validation. ARC relies on having the original
value in the L2; it copies the line’s access information to the
L2 before the write executes. When a core evicts a dirty L1
line to the L2, ARC checks the L2 line’s access information.
If the L2 line has a read-from byte that was written in the
evicted L1 line, ARC immediately validates reads to the line
using the mechanism described in Section 4.3.2.

Evictions. When a core evicts a line from the L1 to the L2
cache, the line’s access information is copied to an identical
bit array for the line in the L2. When the L2 evicts a line,
it sends the line’s access information to the access informa-
tion memory (AIM), co-located with the LLC; Section 4.2
describes the operation of the AIM and the LLC.

4.2 LLC Access Information Management
Rather than storing access information for each LLC line in
the LLC or in memory, ARC stores the information in a cache-
like memory called the access information memory (AIM).
For each byte of access information in a cache line, an AIM
entry contains one read bit for each core (C bits, where C is
the number of cores in the processor), and the current writer
core if any (1 bit to indicate whether there is a writer core
and lgC bits for the writer core). An AIM entry also contains
a 32-bit version, which is used during read validation. For a

R RW R R W

B bits32 bits

Version # Core 1 Access Information

B bits

Core C Access Information

Writer
ID

Writer
ID

log2(C)+1 bitslog2(C)+1 bits

C(B+log2(C)+1) + 32 bits

Figure 4: An AIM entry for a processor with C cores and
B-byte cache lines.

processor with C cores and B-byte cache lines, a cache line’s
AIM entry is 32+(C+1+ lgC)×B bits: 100 bytes per entry
for an 8-core processor with 64-byte cache lines. Figure 4
illustrates the structure of an AIM entry.

When a core writes back a line to the LLC, the LLC updates
the line’s AIM entry to reflect the line’s access information.
The LLC copies the core’s updated access information from
the private line’s metadata into the core’s access information
bits in the line’s AIM entry. When a core writes back a dirty
line to the LLC, the LLC also increments the version for the
line that is stored in the AIM. Note that only the LLC, not
any of the private caches, updates a line’s version.

AIM design. As a centralized structure, contention by cores
to access the AIM threatens scalability at very high core
counts. Banking the AIM is straightforward, reduces con-
tention, and mitigates the threat to scalability. Our design
assumes an AIM with 8 banks.

An “ideal” AIM would contain one entry for every line
in the LLC. However, an ideal AIM is impractical: in a
system with 8 cores, 64-byte lines, and a 16MB, 16-way
LLC, the AIM would be around 25MB—an impractically
large (103 mm2), slow (7.4ns), and power hungry (0.9W
leakage per bank) on-chip structure in 32-nm technology
(data from CACTI 5.3 [63]).

Instead, ARC uses a realistic AIM design that, for 8 cores,
has 32K entries and 4-way associativity. This 3.2MB AIM
has implementable area (23 mm2), latency (2.4ns), and leak-
age power (140mW per bank). In a high-end, 32-nm Intel
Core i7-3970X at 3.5GHz [57], the AIM adds about ∼1%
overhead to the total 2,362 mm2 package area, 9-cycle ac-
cess latency (easily hidden by LLC latency), and leakage at a
tolerable 0.75% of TDP.

The size of an entry in the AIM scales with the number of
cores, and the AIM’s size, latency, and leakage power limit
ARC’s scalability. The AIM is unlikely to scale to CMPs
with very large numbers of cores (i.e., >32) and our design
targets the majority of commercially available CMPs that
have moderate core counts (i.e., ≤32 cores). The AIM’s
hardware design scales well across this range of moderate
CMP core counts. At 16 cores, a 32K-entry AIM is realizable
with a 3.5ns access time, 56 mm2 area overhead, and 0.3W
leakage power per bank (data from CACTI 5.3 [63]). At
32 cores, a 32K-entry AIM is costly, but realizable with a
5.9ns access time, 163 mm2 area cost, and 0.80W leakage
power per bank. A less costly 16K-entry AIM for a 32-core
machine has a latency of 5.6ns, area of 149 mm2, and leakage
power of 0.65W per bank. The AIM remains effective across
core counts: for 32 cores, the smaller, 16K-entry AIM design
performs competitively with the ideal AIM (Section 6.2.3).

5

Virtualizing access information to memory. Regardless
of the geometry of the AIM (ideal vs. cache-like), ARC must
preserve the access information for AIM entries evicted from
the AIM. Similar to prior work [69], ARC maps evicted AIM
entries into a dedicated region in memory.

To enable post-commit to clear all access information for
a core without explicitly tracking and updating access infor-
mation that has been evicted to memory, ARC augments an
evicted AIM entry with a list of saved epochs, one per core,
before pushing the entry to memory. An epoch is a number
that identifies a core’s SFR. The AIM maintains an epoch for
each core in a current epoch register. A core’s current epoch
register in the AIM is incremented whenever a core finishes
an SFR. When the AIM fills a line, it compares the incoming
entry’s saved epochs to each core’s current epoch register.
If the epochs differ, the AIM clears the access information
for that line for that core. It is then correct to clear a core’s
access information because the saved epoch indicates that the
access information represents accesses from a previous SFR.

For a system with C cores, B-byte cache lines, 32-bit ver-
sions, and E-bit epochs, ARC must preserve P = (32+(C+
1+ lgC)×B+E×C)/B bits per byte of access information
from the AIM. ARC reserves the high-order arg mini(2i−1≥
P/8) address bits and uses addresses with those bits set to
store evicted access information. With 8 cores, 64-byte lines,
and 32-bit epochs, a system needs P = 16.5 bits per byte of
backing memory. In such a system, ARC reserves memory
addressed by the most significant 2 address bits for access
information, leaving the application with a 62-bit address
space. Although our prototype implementation reserves phys-
ical memory for an AIM entry for every line, an implemen-
tation could use virtual addresses for backing memory or
use a sparse representation for AIM entries in memory (like
LogTM [78]), potentially at higher cost.

4.3 Consistency Controller (CC)
ARC ensures consistency using a region commit protocol that
is implemented in ARC’s distributed consistency controller
(CC). Section 3 described the basic steps of the region commit
protocol. Here we focus on the CC’s implementation.

The CC consists of per-core logic, which is unlikely to limit
scalability. The CC has a read/write interface to the AIM that
allows the CC and AIM to exchange access bits, versions,
and values. The CC also includes AIM-side buffering and
comparison logic that is co-located with the AIM. AIM-side
logic is replicated per-core to avoid scalability issues.

4.3.1 Region Commit Protocol
A core’s CC initiates the region commit protocol. A core’s
protocol phases can overlap with other cores performing the
protocol or executing regions; the protocol ensures atomicity
by setting a core’s write bits in the AIM during pre-commit
and not clearing them until post-commit. During the protocol,
a core’s CC need not ever communicate directly with other
cores. A core’s CC checks consistency using only (1) data in
the LLC, (2) metadata in the core’s cache, and (3) metadata
in the AIM.

Pre-commit. During pre-commit, the core streams access
information from its dirty, privately cached lines to its AIM-
side CC logic. The AIM-side CC logic buffers the lines’

write access information while it reads in the line’s access
information from the AIM. The core’s AIM-side CC logic
compares the core’s access bits to all other cores’ access
bits using fixed-function logic. The logic selects the core’s
access bits and computes a bitwise and of those bits with all
other cores’ bits. If a logical or of the bits in the result is
nonzero, then the bits indicate a conflict and the core’s CC
delivers an exception to the core. If not, the AIM-side CC
logic updates the access bits in the AIM to match the buffered
ones it received from the core’s CC.

Read validation. After pre-commit, the CC begins read
validation. The core’s CC streams a sequence of messages
to its AIM-side CC logic, one for each line the core read
during the ending region. Each message contains the line’s
address and version from the core’s private cache(s). The
core’s AIM-side CC logic fetches addresses and versions
from the AIM for each message it receives from the core,
and uses dedicated logic to compare the line’s version in the
core’s message to the version from the AIM. If all versions
match and no write bits are set for a remote core for any offset
in the shared line, read validation completes successfully. If a
read line’s versions match, but a write bit was set by a remote
core, the core’s AIM-side CC logic responds to the core’s CC
with read bits and checks for write–read conflicts. In case of
a conflict, the core raises a consistency exception.

If a line’s version differs, then another core wrote the line
during the ending region and there may be a conflict. On
a version mismatch, the core’s AIM-side CC logic sends
the core’s CC the line’s address and updated version. The
core re-fetches that line from the LLC into a dedicated line
comparison buffer in the core. The core compares the (read-
only) line in the private cache to the line in the comparison
buffer.

If the lines differ, then the validating core read inconsistent
data and raises a consistency exception. If they match, then
the core may have seen consistent data in its region. On a
version mismatch, the core also sets its revalidate bit. The
revalidate bit indicates that after the core finishes validating
all remaining lines, it must start again from the beginning,
streaming version messages to its AIM-side CC logic, to
ensure that it saw consistent data. After the core completes
validation without version mismatches, it unsets the revalidate
bit and continues.

Post-commit. During post-commit, a core prepares for ex-
ecuting its next region. The core streams dirty bytes in its
L1 and L2 caches to the LLC, and it clears all access infor-
mation and invalidates all lines in its L1 and L2 (e.g., using
gang clearing [76]). The core’s AIM-side CC logic clears
the core’s access information in the AIM. For lines evicted to
memory, the AIM clears access information lazily when the
line is next cached in the LLC. Finally, the AIM increments
the committing core’s epoch.

4.3.2 Other CC Responsibilities
Handling evictions to the LLC. When an L2 evicts a line
with access information, the core’s CC performs pre-commit
and read validation on the line. The CC checks for conflicts
using the access information in the AIM, and checks that the
L2 line’s bytes match the version or (if not the version) the

6

values in the LLC. Finally, the AIM-side CC logic updates
the line’s access information in the AIM.

When a core’s L2 fetches an LLC line with access bits in
the AIM for that core, the LLC sends the core the line’s data
values and the access bits for the core, which the core uses to
populate its L1 and L2 access information.

Delivering consistency exceptions. When a core’s CC de-
tects or infers a conflict, ARC generates a consistency ex-
ception, by raising a dedicated per-core signal (via a non-
maskable interrupt) for the core that detected the conflict. By
default, the core that receives the interrupt executes operating
system code to terminate program execution.

4.4 Implementing Synchronization
By forgoing M(O)ESI coherence, ARC needs a mechanism
to implement lock operations such as acquire and release.
ARC’s mechanism for implementing locks follows DeN-
ovoND’s mechanism for locks, which uses distributed queue-
based locks to solve the same problem [103]. The main
difference is that DeNovoND’s lock protocol allows core-to-
core communication, while ARC uses only communication
between the core and LLC.

We assume compiler support to identify lock operations
as region boundary operations that should be handled spe-
cially (similar to endR in CE [69]). Alternatively, ARC could
handle legacy programs by using a pthread library implemen-
tation modified to identify lock operations for ARC, but this
approach would not support non-pthread synchronization
(e.g., inline assembly with atomic accesses).

5 Design Optimizations
At the end of the region commit protocol, a core’s CC invali-
dates all lines in its L1 and L2. This self-invalidation step is a
key source of overhead in the ARC design. Section 5.1 intro-
duces optimizations that focus on reducing self-invalidation
soundly. Section 5.2 describes how to reduce traffic generated
by the region commit protocol.

5.1 Avoiding Self-Invalidation
We introduce separate optimizations for touched lines (read
or written by the committing region) and untouched lines.

Touched lines. The intuition for avoiding invalidation of
touched lines is that pre-commit and read validation already
process these lines and can check if they are up-to-date and
thus do not need to be invalidated. ARC need not invalidate
privately cached lines that are read-only. This optimization is
correct because read validation already ensures that read-only
lines in the private cache are consistent with the LLC’s copy.

For dirty lines, pre-commit checks if a line’s version is
unchanged in the LLC—a sufficient condition for not invali-
dating the line. This optimization extends pre-commit to send
the core’s cached version of the line to the core’s AIM-side
CC. If the version matches the value in the AIM, then the
core has the latest version and does not need to invalidate
the line. On a version mismatch, the AIM-side CC sends a
message asynchronously to the core indicating that it must in
fact invalidate the line.

Untouched lines. An untouched line need not be invali-
dated if ARC can ensure that other cores have not written
to the line during the region’s execution. We introduce two
optimizations that exploit this insight.

The first optimization adds cond-invalid as a new state
for private cache lines in addition to valid and invalid; cond-
invalid indicates that the line’s data is valid only if the LLC’s
version is unchanged. During post-commit, a core changes
each untouched line’s state to cond-invalid, instead of invalid.
When a core accesses a line in the cond-invalid state for
the first time in a subsequent region, the core’s CC sends
its copy of the line’s version to the core’s AIM-side CC,
which compares the L2’s version with the AIM’s version
for the same line and replies to the core indicating whether
the versions match. If the versions match, the core’s CC
upgrades the line in the L2 and L1 caches to valid. Otherwise,
the access is handled as a miss. This optimization reduces
on-chip traffic by often sending only a version rather than
data values on an L2 cache miss.

Second, ARC minimizes self-invalidations for untouched
lines by keeping a per-core write signature [31] for the core’s
AIM-side CC that encodes which lines have been updated in
the LLC during the core’s current region by any other core.
During post-commit, if a line is not in a core’s write signature,
the core’s CC need not invalidate the line.

The AIM-side CC encodes a write signature for each core’s
ongoing region as a Bloom filter [17, 31]. Whenever a core
writes back to the LLC, the AIM-side CC updates every other
core’s write signature to include the updated line. When a
core starts read validation, the AIM-side CC sends the core’s
CC its write signature and clears the AIM-side CC’s copy of
the core’s signature. The core’s CC uses its received copy of
the write signature during post-commit to identify untouched
lines in its private caches. If the signature does not contain
the line, then it was definitely not updated in the LLC during
the core’s execution, so it can stay in the valid state in the
core’s private caches.

A small Bloom filter is desirable because the AIM-side
CC sends it to the core’s CC at each region commit. A
small Bloom filter is sufficient to encode a write signature
for short regions—which benefit the most from reducing self-
invalidation. The AIM-side CC uses a 112-bit Bloom filter
for each core, which along with control data fits into one
16-byte network flit (Section 6.1 and Table 1). We use two
hash functions that each set one Bloom filter bit.

5.2 Optimizing the Region Commit Protocol
The following optimizations minimize the work performed
by the region commit protocol.

Optimizing read validation. A core c can forgo validating
a line if the line was not updated in the LLC by any other core
during c’s region. To do this check, c’s CC uses the per-core
write signature introduced in Section 5.1, obtained before
read validation starts. To ensure atomicity, c’s CC re-fetches
the write signature after read validation to ensure it has not
changed; if it has, c’s CC restarts read validation.

Deferring write-backs. We optimize post-commit’s write-
back of dirty lines, by deferring sending the data to the AIM-
side CC until (and if) another core needs it. ARC implements
this optimization by adding lgC additional bits (for a system

7

with C cores) to each cache line in the LLC to identify the
last-writer core that has up-to-date data, plus an additional bit
to indicate whether the line’s state is deferred. If another core
requests a deferred line from the LLC, the LLC first fetches
the latest values from the last-writer core. This optimization,
which is analogous to the Owner state in the MOESI proto-
col [100], provides substantial benefit by avoiding obligatory
write-backs at every region commit.

6 Evaluation
This section evaluates performance and on- and off-chip traf-
fic for ARC, compared with competing approaches.

6.1 Simulation Methodology
We implemented ARC in a simulator based on the RADISH
simulator provided by its authors [37]. For comparison to a
baseline, we have implemented a directory-based MESI cache
coherence protocol [100] to model current shared-memory
systems, which we call MESI. We have also implemented
Conflict Exceptions (CE) [69] on top of MESI. The simu-
lators consume a serialized trace of events generated by a
Pintool [71]. Multiple simulator configurations process the
same trace, in order to eliminate differences due to run-to-
run nondeterminism. All three simulators model a realistic
baseline architecture with 8–32 cores, detailed in Table 1.

For ARC, the LLC is not inclusive (Section 4), and the
simulator models a realistic AIM cache, as Table 1 shows.
For MESI and CE, the LLC is inclusive in order to support a
directory protocol [100], and the directory is embedded in the
LLC with the same associativity as the LLC (see Figure 8.6
in [100]). The CE algorithm requires memory access on pri-
vate cache evictions to back up access metadata and to fetch
access metadata on LLC hits under certain conditions [69];
our CE simulator optimistically assumes that the latency of
accessing memory is masked by subsequent operations. The
simulators treat each pthread function call as a corresponding
lock operation. The ARC simulator treats other atomic ac-
cesses (i.e., instructions with the x86 LOCK prefix) as special
accesses that are ignored by ARC’s consistency mechanism
and handled like locks (Section 4.4), except that the accesses
do not delineate regions.

Section 6.4 compares the mechanisms of ARC and TCC [50]
by estimating the costs of using TCC’s mechanism, instead
of ARC’s mechanism, to provide SFRSx.

Estimating execution time. Table 1 shows the number of
cycles required for memory and non-memory instructions.
All three simulators report the maximum number of cycles for
any core; as in prior work [14, 37], cores do not model time
spent waiting at synchronization. All three simulators model
wait-free, write-back caches with idealized write buffers.

The ARC simulator models the costs of ARC performing
operations at region boundaries. Since cores send multiple
messages without waiting synchronously for responses during
the pre-commit and read validation phases, we compute the
cycle cost of messaging based on the total size of messages
sent and the available bandwidth between a core and the LLC.
During read validation, a core sends lines’ versions to the
LLC. Each 16-byte flit contains four lines to be validated,
since a flit can fit four tags and versions plus a control block.

Processor 8-, 16-, or 32-core chip at 1.6 GHz.
Each non-memory-access instruction takes 1 cycle.

L1 cache 8-way 32 KB per-core private cache,
64 B line size, 1-cycle hit latency

L2 cache 8-way 256 KB per-core private cache,
64 B line size, 10-cycle hit latency

Remote core 15-cycle one-way costcache access
LLC 64 B line size, 35-cycle hit latency

8 cores: 16-way 16 MB shared cache
16 cores: 16-way 32 MB shared cache
32 cores: 32-way 64 MB shared cache

AIM cache 4-way metadata cache with 32K lines and 8 banks
8 cores: 100 B line size (∼3.2 MB), 4-cycle hit latency

16 cores: 172 B line size (∼5.4 MB), 6-cycle hit latency
32 cores: 308 B line size (∼9.7 MB), 10-cycle hit latency

Memory 120-cycle latency

Bandwidth NoC: 100 GB/s, 16-byte flits; Memory: 48 GB/s

Table 1: Architectural parameters used for simulation.

Avg. accesses per SFR (×103)
Threads nnn = 8 nnn = 16 nnn = 32

blackscholes 1+n 8,560 4,280 2,140
bodytrack 2+n 49.9 39.7 29.9
canneal 1+n 498 130 64.9
dedup 3+3n 44.7 44.6 52.5
ferret 3+4n 995 832 370
fluidanimate 1+n 0.115 0.085 0.055
raytrace 1+n 4,740 2,470 1,260
streamcluster 1+2n 1.37 0.428 0.122
swaptions 1+n 78,000 39,000 19,500
vips 3+n 88.6 68.6 50.7
x264 1+2 f 0.487 0.486 0.560

Table 2: Threads spawned and average region sizes in
thousands (rounded to 3 significant figures unless < 0.1)
for the PARSEC benchmarks. n is the minimum threads
parameter in PARSEC. f is the input-size-dependent number
of frames processed by x264.

We assume that the core’s AIM-side CC and LLC are ported
to handle a flit’s four validation requests at a time. The
ARC simulator models version mismatches, including the
costs of the AIM-side CC alerting the core’s CC and the
core’s CC restarting and repeating read validation. The ARC
simulator models post-commit assuming gang-clearing for
self-invalidation of private cache lines and bulk-clears of
per-core AIM information.

Estimating network traffic. We simulate an on-chip net-
work and off-chip memory network with 16-byte flits and
the bandwidth characteristics shown in Table 1. Control
messages are 8 bytes (tag plus message type); a MESI data
message is 64 bytes (corresponding to a cache line). For ARC
write-backs, we model idealized write-buffer coalescing that
sends only the dirty bytes in a line.

Benchmarks. Our experiments execute the PARSEC bench-
marks [14], version 3.0-beta-20150206, with simmedium
inputs. We include 11 of 13 programs; freqmine uses Open-
MP as the parallelization model, and our Pintool fails to finish
executing facesim. We report cycles and traffic for the par-

8

allel “region of interest” (ROI) only [13]; vips lacks an ROI
annotation so we use its entire execution as the ROI.

Table 2 shows how many threads each benchmark spawns,
parameterized by n, which is PARSEC’s minimum threads
parameter (the -n flag). The last three columns show the
average number of memory accesses performed per SFR
for n=8, n=16, and n=32. The simulators set n equal to the
number of cores (8, 16, or 32) in the simulated architecture.
The simulators map threads to cores using modulo arithmetic.

Consistency exceptions. When the ARC simulator detects
the conditions for a consistency exception, it logs the excep-
tion and continues execution normally. The simulator can
report both locations involved in a region conflict, since it
maintains the last-access source location corresponding to
each read and write bit of access information. The follow-
ing table shows, for 8 cores, the number of distinct conflicts
(i.e., unique unordered pairs of static source locations) and
dynamic conflicts for the two benchmarks for which ARC
generated consistency exceptions.4

Distinct conflicts Dynamic conflicts
canneal 1 1,205
streamcluster 11 836

Using Google’s ThreadSanitizer [93] and by implementing
“collision analysis” [42] in Pin, we have confirmed that each
detected conflict corresponds to a true data race.

6.2 Run-Time Performance and Traffic
Figures 5 and 6 show our main results. The MESI-8, CE-8,
and ARC-8 configurations show the performance and traffic
overheads running on 8 cores. Correspondingly, the next two
groups of three bars show results on 16 and 32 cores. Each
bar is the mean of three trials, and the results are normalized
to MESI with 8 cores.

6.2.1 Run-Time Performance
Figure 5(a) shows executed cycles as reported by the simula-
tors, broken down into different components. MESI and CE
(which builds on MESI) are divided into cycles attributed to
coherence and other execution. Coherence cycles are those
spent when the directory forwards requests to remote cores
and for core-to-core communication. For ARC, cycles are
divided into cycles for pre-commit, read validation, and post-
commit, and cycles for region execution.

Figure 5(a) shows that CE adds negligible performance
overhead over MESI. Our CE simulator ascribes no addi-
tional cost for transmitting access metadata piggybacked on
MESI coherence messages, nor to access metadata in mem-
ory; hence the performance of CE is similar to MESI.

The figure shows that ARC outperforms MESI and CE
in several cases by avoiding the latency of MESI coher-
ence. ARC underperforms MESI and CE in a few cases
(fluidanimate, and streamcluster with 16 and 32 cores) since
regions are short (see Table 2) and incur latency from cache
misses due to frequent self-invalidation. On average ARC
outperforms MESI and CE by 4–5% for 8 cores and performs
nearly identically for 16–32 cores.

4We ignore conflicts on internal library and system data.

On-chip LLC-to-memory
MESI CE ARC MESI CE ARC

bodytrack 1 2 3 < 1 < 1 < 1
canneal 60 62 54 2 17 5
dedup 3 3 3 1 1 1
ferret 5 5 4 < 1 2 < 1
fluidanimate 7 178 35 < 1 1 < 1
streamcluster 13 90 18 < 1 10 < 1
vips 9 9 8 1 4 2

Table 3: Average on- and off-chip bandwidth, in GB/s,
for MESI, CE, and ARC for 32 cores. We omit benchmarks
for which every value in the row would be ≤2 GB/s.

6.2.2 On-Chip Traffic
Figure 5(b) compares the on-chip network traffic incurred
by MESI, CE, and ARC, counted in 16-byte flits. On-chip
traffic for ARC is defined as all communication between cores
and the LLC/AIM. For MESI and CE, it is communication
between cores and the LLC, and core-to-core communication.

The key result from Figure 5(b) is that for all benchmarks
except fluidanimate, ARC’s traffic overhead increases pro-
portionately with core count, and ARC’s traffic scalability
is nearly identical to MESI’s. This result shows that ARC’s
traffic overhead is unlikely to prevent scaling to moderate
core counts. For fluidanimate, traffic increases dispropor-
tionately with core count for both CE and ARC because
fluidanimate performs more writes and synchronization oper-
ations with increasing numbers of threads. With 16 worker
threads, fluidanimate has 14% more writes and 44% more
synchronization operations compared to 8 worker threads,
while it has 46% more writes and 147% more synchroniza-
tion operations with 32 threads. Thus, the benchmark has
progressively smaller regions with more threads (Table 2). As
described in prior work [69] and emulated in our simulator,
the CE protocol piggybacks on MESI coherence messages
and transfers access metadata (endR messages [69]) at region
boundaries to detect region conflicts. For CE, more frequent
region boundaries imply more frequent exchange of access
information among cores [69], which results in CE incur-
ring more on-chip network traffic than MESI, especially for
fluidanimate and streamcluster. For ARC, more frequent
region boundaries cause more frequent invocations of pre-
and post-commit, read validation, and self-invalidation oper-
ations, which all increase traffic, as the figure’s component
breakdown shows.

For swaptions with 32 cores, MESI and CE incur substan-
tially more traffic than ARC. This result is due to swaptions’s
frequent LLC evictions, for which an inclusive LLC (required
by MESI and CE but not ARC; Section 6.1) must recall pri-
vately cached copies of the line.

Is the raw magnitude of traffic used by MESI, CE, or ARC
a cause for concern? The On-chip columns in Table 3 show
the average on-chip bandwidth used, in GB/s, for MESI, CE,
and ARC on 32 cores. For fluidanimate and streamcluster,
the CE algorithm incurs high on-chip network traffic (178
and 90 GB/s), saturating or nearly saturating the on-chip net-
work’s available bandwidth (100 GB/s). ARC uses several
times less bandwidth than CE for fluidanimate and stream-
cluster, and its usage for every program is significantly less
than the available bandwidth.

9

MESI: coherence MESI: other execution ARC: post-commit ARC: read validation ARC: pre-commit ARC: region execution

blackscholes

bodytrack

canneal

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
li

ze
d

 e
x
ec

u
ti

o
n

cy
cl

es M
E
S
I-
8

C
E
-8

A
R
C
-8

M
E
S
I-
1
6

C
E
-1
6

A
R
C
-1
6

M
E
S
I-
3
2

C
E
-3
2

A
R
C
-3
2

(a) Execution time.

fluidanimate

swaptions

0

5

10

15

20

25

30

35

N
o
rm

a
li

ze
d

 o
n

-c
h

ip
 t

ra
ff

ic

blackscholes

bodytrack

canneal

dedup
ferret

raytrace

streamcluster

vips
x264

geomean

0

1

2

3

M
E
S
I-
8

C
E
-8

A
R
C
-8

M
E
S
I-
1
6

C
E
-1
6

A
R
C
-1
6

M
E
S
I-
3
2

C
E
-3
2

A
R
C
-3
2

(b) On-chip network traffic.

Figure 5: Execution time and on-chip traffic costs for MESI, CE, and ARC for 8–32 cores, normalized to MESI with 8
cores. The suffix for each simulator indicates the number of cores. The legend at top applies to both graphs.

blackscholes

bodytrack

canneal

dedup
ferret

fluidanimate

raytrace

streamcluster

swaptions

vips
x264

geomean

0

1

2

3

4

5

N
o

rm
a

li
ze

d
 o

ff
-c

h
ip

 t
ra

ff
ic

M
E
S
I-
8

C
E
-8

A
R
C
-8

M
E
S
I-
1
6

C
E
-1
6

A
R
C
-1
6

M
E
S
I-
3
2

C
E
-3
2

A
R
C
-3
2

5.5 7.6 10 11 13 500 260 620 7.5
20

6.3 7.1

Figure 6: LLC-to-memory traffic for for MESI, CE, and ARC for 8–32 cores, using the same configurations as Figure 5.
The different shades of gray differentiate MESI, CE, and ARC, and are unrelated to Figure 5’s legend.

6.2.3 Off-Chip (LLC-to-Memory) Traffic
Figure 6 shows the LLC-to-memory (off-chip) traffic for
MESI, CE, and ARC. CE incurs high off-chip traffic overhead
over MESI, since the design backs up and fetches evicted
access metadata information to and from memory [69]. In
particular, CE must back up access bits in an in-memory ta-
ble when a line that was accessed in an ongoing region is
evicted from a private cache or the LLC. Similarly, the CE
design requires memory traffic even on an LLC hit, if the
line was evicted to memory or the core has evicted a line
from its private caches during the ongoing region. Table 3’s
LLC-to-memory columns show that CE requires high net-
work bandwidth for canneal and streamcluster compared to
MESI and ARC. The memory traffic requirement for ARC is
comparable to MESI for all benchmarks.

Sensitivity to AIM cache size. Our experiments by default
use an AIM cache with 32K entries (Table 1). We have also
evaluated ARC with an idealized AIM cache that has one
entry for each LLC line, as well as a 16K-entry AIM cache
(results not shown). On 32 cores, the idealized AIM cache

reduces memory traffic by 5.8% on average, compared with
the 32K-entry AIM cache, confirming that a 32K-entry design
is reasonably close to the ideal case. With a lower hardware
cost, a 16K-entry AIM cache increases memory traffic by
only 5.7% on average, compared to the 32K-entry design.
The impact on execution time is minimal: on average, the
idealized AIM improves performance by less than 1%, and
the 16K-entry AIM degrades performance by less than 1%.

6.3 Impact of Optimizations
The default ARC configuration includes all optimizations
presented in Section 5. This section compares with ARC
without optimizations, focusing on on-chip network traffic
since that metric is most affected by the optimizations. Fig-
ure 7 shows the on-chip network traffic incurred by MESI and
different configurations of ARC, for 8 cores, normalized to
MESI. ARC unopt includes none of Section 5’s optimizations;
it incurs 61% more traffic than MESI on average. For flu-
idanimate, ARC unopt incurs high on-chip traffic relative to
MESI. ARC inv opt uses only the optimizations for reducing
self-invalidations (Section 5.1), thereby reducing traffic sub-

10

MESI: coherence MESI: other exec.

ARC: post-commit ARC: read val. ARC: pre-commit ARC: region exec.

fluidanimate

0

2

4

6

8

10

12

14

16

18

N
o
r
m

a
li

z
e
d

 t
r
a
ff

ic

blackscholes

bodytrack

canneal

dedup
ferret

raytrace

streamcluster

swaptions

vips
x264

geomean

0

1

2

3

4

5

M
E

S
I

A
R

C
 u

n
o
p
t

A
R

C
 i

n
v
 o

p
t

A
R

C

Figure 7: The effect of ARC optimizations on on-chip
network traffic in a system with 8 cores.

stantially for fluidanimate and other programs. On average,
ARC inv opt incurs 28% more traffic than MESI. The last
configuration, (fully optimized) ARC, reduces traffic further
by optimizing commit and read validation, incurring only
2.9% average traffic over MESI for 8 cores.

6.4 Comparison with TCC
Like ARC, TCC provides both consistency and coherence
at region boundaries [50] (Section 2.2). However, ARC’s
novel consistency mechanism addresses essential flaws in
TCC related to buffer bounding limitations, eliminating a
key impediment to parallel performance. Furthermore, ARC
avoids the costs of detecting conflicts directly, instead infer-
ring conflicts by validating reads of privately cached data.

To compare TCC with ARC empirically, we evaluate a
modified version of ARC called ARC-TCC that uses TCC’s
mechanisms and algorithms. For ARC-TCC, we compute
execution cycles and on-chip traffic excluding pre-commit,
read validation, and post-commit, but including the follow-
ing: each region broadcasts its write set, and a region that
overflows its private caches cannot execute in parallel with
other overflowed or committing regions [50] (Section 2.2).
We model other costs (e.g., private and shared cache hits and
misses) in the same way as for ARC.

For 8 cores, we find that ARC-TCC increases execution
cycles by 2.8X and on-chip traffic by 3.8X on average for all
programs, compared with default ARC. For 32 cores, ARC-
TCC incurs 4.4X execution cycles and 11.7X on-chip traffic
compared to ARC. TCC’s mechanisms add high on-chip traf-
fic by broadcasting write sets to all cores, and they incur high
run-time overhead because many regions overflow the private
caches, leading to much serialization. This comparison shows
that, for the same context (i.e., precise consistency checking
of SFRs), ARC’s consistency mechanism provides substan-
tial performance and traffic benefits over TCC’s mechanism.
Although follow-up work on TCC optimizes broadcast traf-
fic (by adding a directory, making it closer to HTM designs
that piggyback on coherence; Section 2.2) and parallelizes
commits [32, 85], the fundamental bottleneck of serialized
execution of large regions remains.

6.5 Summary
Our experiments up to 32 cores show that ARC compares fa-
vorably with both CE and TCC in terms of execution time and
on- and off-chip traffic. ARC uses less on-chip and off-chip
bandwidth than CE, which sometimes saturates the available

on-chip bandwidth. The comparison with TCC’s mechanism
shows that ARC’s mechanism is substantially more scalable
and efficient than TCC’s mechanism. Furthermore, ARC is
competitive even with the MESI baseline in terms of time and
traffic, while at the same time providing stronger consistency
guarantees than MESI. Our evaluation thus shows ARC’s
value and viability.

7 Related Work
This section compares ARC with work other than the consis-
tency mechanisms covered by Section 2.2.

Region serializability. Ouyang et al. enforce SFR serial-
izability using a speculation-based approach that relies on
extra cores to avoid substantial overhead [83]. IFRit detects
conflicts between extended SFRs, but adds high run-time
overhead and misses some SFR conflicts that compromise
SFR serializability [38]. Other approaches support mem-
ory models based on serializability of bounded regions that
are in general shorter than full SFRs [7, 30, 70, 74, 92, 97].
To provide end-to-end guarantees, these approaches require
corresponding restrictions on compiler optimizations.

Read validation. Some software transactional memory (STM)
systems use version or value validation of reads (e.g., [35, 52,
54, 82, 89]). To our knowledge, ARC’s adaptation of valida-
tion to hardware (i.e., to the hierarchy of private and shared
caches) and its combination of version and value validation
are both novel.

Hardware support for detecting data races. Researchers
have introduced custom hardware to accelerate data race
detection, adding on-chip memory for tracking vector clocks
and extending cache coherence [6,37,79,91,108,111]. Clean
simplifies race detection, but provides weaker consistency
guarantees than SFRSx [91].

Rethinking cache coherence. Recently, there have been
efforts to reduce the complexity of coherence protocols and
the memory subsystem design by relying on disciplined paral-
lelism [33, 103]. DeNovo and DeNovoND show that a simple
coherence protocol can provide consistency for data-race-
free (DRF) programs [33, 103]. In contrast, ARC provides
consistency for all executions.

DeNovoSync, SARC, and VIPS optimize MOESI-style co-
herence protocols, using self-invalidation to reduce the cost
and complexity of eager invalidation [60, 87, 102]. TSO-CC
and Racer are coherence protocols that provide TSO using
self-invalidation and without tracking sharers [40,88]. Unlike
ARC, these approaches provide consistency guarantees for
data-race-free executions only. Jimborean et al. introduce
compile-time analysis that safely extends SFRs based on a
DRF assumption, reducing self-invalidation costs [58].

Some distributed shared memory (DSM) systems provide
release consistency, which allows deferring coherence opera-
tions until synchronization operations for DRF programs [3,
12, 18, 29, 44, 61]. While ARC’s coherence mechanisms are
inspired by release consistency mechanisms, ARC’s design
provides strong consistency for all executions.

11

8 Conclusion
ARC is an architecture design that provides end-to-end SFRSx,
ensuring strong, well-defined semantics for all executions.
The key to ARC’s efficiency is its novel consistency mecha-
nism that allows regions to execute largely in isolation, de-
ferring consistency and coherence to region boundaries and
on evictions, without broadcasting access information or seri-
alizing cores’ operations. ARC performs competitively with
the state-of-the-art techniques CE [69] and TCC [50] in terms
of run-time performance and on- and off-chip traffic, without
incurring CE’s high traffic costs or TCC’s scalability bottle-
necks. These results suggest that ARC advances the state
of the art significantly in parallel architecture support for
consistency mechanisms and strong consistency guarantees.

Acknowledgments
We thank Joe Devietti for sharing the RADISH simulator, and
Nathan Beckmann for technical suggestions and feedback on
the text.

9 References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking:
Static Race Detection for Java. TOPLAS, 28(2):207–255, 2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for
Rethinking Parallel Languages and Hardware. CACM, 53:90–101,
2010.

[3] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. A Comparison of Entry Consistency and Lazy
Release Consistency Implementations. In HPCA, pages 26–37, 1996.

[4] S. V. Adve and K. Gharachorloo. Shared Memory Consistency
Models: A Tutorial. IEEE Computer, 29:66–76, 1996.

[5] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In
ISCA, pages 2–14, 1990.

[6] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting
Data Races on Weak Memory Systems. In ISCA, pages 234–243,
1991.

[7] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang,
S. Midkiff, and D. Wong. BulkCompiler: High-Performance
Sequential Consistency through Cooperative Compiler and Hardware
Support. In MICRO, pages 133–144, 2009.

[8] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell,
and F. Z. Nardelli. The Semantics of Power and ARM Multiprocessor
Machine Code. In DAMP, pages 13–24, 2008.

[9] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded Transactional Memory. In HPCA, pages 316–327,
2005.

[10] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware Memory
Protection to Build a High-Performance, Strongly-Atomic Hybrid
Transactional Memory. In ISCA, pages 115–126, 2008.

[11] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
CoreDet: A Compiler and Runtime System for Deterministic
Multithreaded Execution. In ASPLOS, pages 53–64, 2010.

[12] B. N. Bershad and M. J. Zekauskas. Midway: Shared Memory
Parallel Programming with Entry Consistency for Distributed
Memory Multiprocessors. Technical Report CMU-CS-91-170,
Carnegie Mellon University, 1991.

[13] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, 2011.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In PACT,
pages 72–81, 2008.

[15] S. Biswas, M. Cao, M. Zhang, M. D. Bond, and B. P. Wood.
Lightweight Data Race Detection for Production Runs. In

International Conference on Compiler Construction, pages 11–21,
2017.

[16] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In OOPSLA, pages
241–259, 2015.

[17] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. CACM, 13:422–426, 1970.

[18] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and
J. Sandberg. Virtual Memory Mapped Network Interface for the
SHRIMP Multicomputer. In ISCA, pages 142–153, 1994.

[19] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making
the Fast Case Common and the Uncommon Case Simple in
Unbounded Transactional Memory. In ISCA, pages 24–34, New
York, NY, USA, 2007.

[20] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood.
TokenTM: Efficient Execution of Large Transactions with Hardware
Transactional Memory. In ISCA, pages 127–138, 2008.

[21] H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[22] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but
Data Races are Pure Evil. In RACES, pages 9–14, 2012.

[23] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68–78, 2008.

[24] H.-J. Boehm and S. V. Adve. You Don’t Know Jack about Shared
Variables or Memory Models. CACM, 55(2):48–54, 2012.

[25] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding
Out-of-Thin-Air Results. In MSPC, pages 7:1–7:6, 2014.

[26] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In PLDI, pages 255–268, 2010.

[27] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA,
pages 211–230, 2002.

[28] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy.
Invyswell: A Hybrid Transactional Memory for Haswell’s Restricted
Transactional Memory. In PACT, pages 187–200, 2014.

[29] M. Castro, P. Guedes, M. Sequeira, and M. Costa. Efficient and
Flexible Object Sharing. In ICPP, August 1996.

[30] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk
Enforcement of Sequential Consistency. In ISCA, pages 278–289,
2007.

[31] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk Disambiguation
of Speculative Threads in Multiprocessors. In ISCA, pages 227–238,
2006.

[32] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A Scalable, Non-blocking
Approach to Transactional Memory. In HPCA, pages 97–108, 2007.

[33] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism. In
PACT, pages 155–166, 2011.

[34] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and Precise Datarace Detection for
Multithreaded Object-Oriented Programs. In PLDI, pages 258–269,
2002.

[35] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In PPoPP, pages 67–78,
2010.

[36] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, pages 85–96, 2009.

[37] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: Always-On Sound and Complete Race
Detection in Software and Hardware. In ISCA, pages 201–212, 2012.

[38] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm.
IFRit: Interference-Free Regions for Dynamic Data-Race Detection.
In OOPSLA, pages 467–484, 2012.

[39] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255, 2007.

12

[40] M. Elver and V. Nagarajan. TSO-CC: Consistency directed cache
coherence for TSO. In HPCA, pages 165–176, 2014.

[41] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In SOSP, pages 237–252, 2003.

[42] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
Data-Race Detection for the Kernel. In OSDI, pages 1–16, 2010.

[43] M. Eslamimehr and J. Palsberg. Race Directed Scheduling of
Concurrent Programs. In PPoPP, pages 301–314, 2014.

[44] C. Fensch and M. Cintra. An OS-Based Alternative to Full Hardware
Coherence on Tiled CMPs. In HPCA, pages 355–366, 2008.

[45] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121–133, 2009.

[46] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and
Complete Dynamic Atomicity Checker for Multithreaded Programs.
In PLDI, pages 293–303, 2008.

[47] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance
Evaluation of Memory Consistency Models for Shared-memory
Multiprocessors. In ASPLOS, pages 245–257, 1991.

[48] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-memory Multiprocessors. In ISCA, pages 15–26, 1990.

[49] P. Godefroid and N. Nagappan. Concurrency at Microsoft – An
Exploratory Survey. In EC2, 2008.

[50] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and Consistency. In
ISCA, pages 102–113, 2004.

[51] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In OOPSLA, pages 388–402, 2003.

[52] T. Harris and K. Fraser. Revocable Locks for Non-Blocking
Programming. In PPoPP, pages 72–82, 2005.

[53] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[54] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In PLDI, pages 14–25, 2006.

[55] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In ISCA, pages 289–300,
1993.

[56] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Torrellas.
Two Hardware-Based Approaches for Deterministic Multiprocessor
Replay. CACM, 52:93–100, 2009.

[57] Intel. Intel® CoreTM i7-3970X Processor Extreme Edition.
http://ark.intel.com/products/70845.

[58] A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros.
Automatic Detection of Extended Data-Race-Free Regions. In CGO,
pages 14–26, 2017.

[59] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced
Data Race Detection. In SOSP, pages 406–422, 2013.

[60] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory
Cache Coherence in Performance and Power. IEEE Micro,
30(5):54–65, 2010.

[61] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In ISCA,
pages 13–21, 1992.

[62] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In PPoPP, pages 209–220, 2006.

[63] H. Labs. CACTI 5.3. http://quid.hpl.hp.com:9081/cacti/.

[64] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Computer, 28:690–691,
1979.

[65] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463–474, 2012.

[66] C. Lin, V. Nagarajan, and R. Gupta. Efficient Sequential Consistency
Using Conditional Fences. In PACT, pages 295–306, 2010.

[67] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient Sequential

Consistency via Conflict Ordering. In ASPLOS, pages 273–286,
2012.

[68] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, pages 329–339, 2008.

[69] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying Concurrent Language Semantics with
Precise Hardware Exceptions for Data-Races. In ISCA, pages
210–221, 2010.

[70] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting
and Surviving Atomicity Violations. In ISCA, pages 277–288, 2008.

[71] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation.
In PLDI, pages 190–200, 2005.

[72] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[73] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
Sampling for Lightweight Data-Race Detection. In PLDI, pages
134–143, 2009.

[74] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory Model for
Concurrent Programming Languages. In PLDI, pages 351–362, 2010.

[75] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. A Case for an SC-Preserving Compiler. In PLDI,
pages 199–210, 2011.

[76] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas.
Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors. In MICRO, pages 3–14, 2002.

[77] A. Matveev and N. Shavit. Reduced Hardware NOrec: A Safe and
Scalable Hybrid Transactional Memory. In ASPLOS, pages 59–71,
2015.

[78] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In HPCA, pages
254–265, 2006.

[79] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace:
Signature-Based Data Race Detection. In ISCA, pages 337–348,
2009.

[80] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static
Race Detection. In POPL, pages 327–338, 2007.

[81] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection
for Java. In PLDI, pages 308–319, 2006.

[82] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In
PACT, pages 365–375, 2007.

[83] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region
serializability for all. In HotPar, 2013.

[84] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
Context-Sensitive Correlation Analysis for Race Detection. In PLDI,
pages 320–331, 2006.

[85] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and
R. Balasubramonian. Scalable and Reliable Communication for
Hardware Transactional Memory. In PACT, pages 144–154, 2008.

[86] P. Ranganathan, V. Pai, and S. Adve. Using Speculative Retirement
and Larger Instruction Windows to Narrow the Performance Gap
between Memory Consistency Models. In SPAA, pages 199–210,
1997.

[87] A. Ros and S. Kaxiras. Complexity-Effective Multicore Coherence.
In PACT, pages 241–252, 2012.

[88] A. Ros and S. Kaxiras. Racer: TSO Consistency via Race Detection.
In MICRO, pages 1–13, 2016.

[89] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software
Transactional Memory System for a Multi-Core Runtime. In PPoPP,
pages 187–197, 2006.

[90] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding POWER Multiprocessors. In PLDI, pages 175–186,
2011.

13

[91] C. Segulja and T. S. Abdelrahman. Clean: A Race Detector with
Cleaner Semantics. In ISCA, pages 401–413, 2015.

[92] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.
Hybrid Static–Dynamic Analysis for Statically Bounded Region
Serializability. In ASPLOS, pages 561–575, 2015.

[93] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov.
Dynamic Race Detection with LLVM Compiler. In RV, pages
110–114, 2012.

[94] J. Ševčík and D. Aspinall. On Validity of Program Transformations
in the Java Memory Model. In ECOOP, pages 27–51, 2008.

[95] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-tso: A rigorous and usable programmer’s model for x86
multiprocessors. CACM, 53(7):89–97, 2010.

[96] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel
Programs that Share Memory. TOPLAS, 10(2):282–312, 1988.

[97] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and
M. Musuvathi. Efficient Processor Support for DRFx, a Memory
Model with Exceptions. In ASPLOS, pages 53–66, 2011.

[98] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-End Sequential Consistency. In ISCA, pages
524–535, 2012.

[99] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan.
Sound Predictive Race Detection in Polynomial Time. In POPL,
pages 387–400, 2012.

[100] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers,
2011.

[101] C. SPARC International, Inc. The SPARC Architecture Manual:
Version 8. 1992.

[102] H. Sung and S. V. Adve. DeNovoSync: Efficient Support for
Arbitrary Synchronization Without Writer-Initiated Invalidations. In
ASPLOS, pages 545–559, 2015.

[103] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient
Hardware Support for Disciplined Non-Determinism. In ASPLOS,
pages 13–26, 2013.

[104] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua.
Compiler Techniques for High Performance Sequentially Consistent
Java Programs. In PPoPP, pages 2–13, 2005.

[105] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging
and Replay. In ASPLOS, pages 15–26, 2011.

[106] C. von Praun and T. R. Gross. Static Conflict Analysis for
Multi-Threaded Object-Oriented Programs. In PLDI, pages 115–128,
2003.

[107] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection
on Millions of Lines of Code. In ESEC/FSE, pages 205–214, 2007.

[108] B. P. Wood, L. Ceze, and D. Grossman. Low-Level Detection of
Language-Level Data Races with LARD. In ASPLOS, pages
671–686, 2014.

[109] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling Hardware
Transactional Memory from Caches. In HPCA, pages 261–272, 2007.

[110] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel Transactional Synchronization Extensions for
High-Performance Computing. In SC, pages 19:1–19:11, 2013.

[111] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted
Lockset-based Race Detection. In HPCA, pages 121–132, 2007.

14

