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Abstract
Dynamic analyses struggle to detect all of a program’s data
races, since some data races do not manifest in observed
executions. Predictive analyses detect true data races that
exist only in other, unobserved executions. Smaragdakis
et al. introduce the causally-precedes (CP) relation and a
polynomial-time analysis for sound (no false races) predic-
tive data race detection. However, their analysis and other
existing sound predictive analyses cannot scale beyond ana-
lyzing bounded windows of execution traces.

This work introduces a novel dynamic analysis called
Raptor that computes CP soundly and completely. Unlike
existing analyses, Raptor is inherently an online analysis that
analyzes an execution trace in its entirety and finds all of its
CP-races. An evaluation of a prototype implementation of
Raptor shows that it scales to program executions that exist-
ing analyses cannot handle, finding data races that existing
analyses cannot find.

1. Introduction
Data races are notorious for causing unexpected and erro-
neous behaviour in concurrent programs. An execution has
a data race if two accesses are conflicting and concurrent,
meaning that the accesses are by different threads, at least
one is a write, and they are unordered by the happens-before
relation [2, 34]. Data races commonly lead to atomicity, or-
der, and sequential consistency violations that can cause pro-
grams to crash, hang, or corrupt data [6, 13, 15, 26, 31, 33,
35, 38, 45, 48, 53, 55, 57]. Modern shared-memory program-
ming languages such as Java and C++ provide weak, if any,
semantics for executions with data races [1, 7–10, 39].

Existing analyses that detect data races tend to be either
unsound, meaning that they report false data races,1 or their
coverage is limited to data races that manifest in the cur-
rent execution. Developers generally avoid unsound analyses
(analyses that permit false data races) because each reported

∗ This material is based upon work supported by the National Science Foun-
dation under Grants CSR-1218695, CAREER-1253703, CCF-1421612,
and XPS-1629126.
1 Following prior work on predictive data race detection (e.g. [56]), an
analysis is sound if it reports only true data races.
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Figure 1. Two executions in which x, y, and z are shared variables,
and m is a lock. In each execution, the superscripts differentiate
repeat operations. The double arrow represents a “hard” CP edge
established by Rule (a) of the CP definition (Section 3).

race—whether true or false—takes substantial time to inves-
tigate [3, 11, 25, 28, 40, 45].

Happens-before (HB) analysis tracks the happens-before
relation in order to detect conflicting, concurrent accesses
and report them as data races [21, 25, 49]. However, the
coverage of HB analysis is inherently limited to data races
that manifest in the current execution. Consider the example
executions in Figure 1. In both executions, the two writes
to x are ordered by HB, which is the union of program
and synchronization order [34]. HB analysis thus would not
report a data race for either observed execution. However,
for Figure 1(a), we can see from the execution alone that a
data race definitely exists (if Thread 2 acquired m first, then
the writes to x would be unordered by HB). In contrast, in
Figure 1(b), we cannot say for certain that a data race exists.
For example, wr(x)2’s occurrence might depend on the order
of accesses to y. (Assume that wr(y)2 means not only a write
to y but also a possible read of y, giving the possibility of a
data dependence that could affect control flow.)

Predictive analyses detect data races that are possible in
executions other than the observed execution. Sound predic-
tive analyses report only true data races that are possible in
some execution [16, 29, 30, 37, 51, 54, 56] (Section 11).
Unfortunately, all existing sound predictive analyses cannot
scale to full execution traces. Unlike online dynamic analy-
ses that summarize the execution so far in the form of anal-
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ysis state, these analyses are fundamentally offline, needing
access to the entire execution trace. To handle nontrivial ex-
ecution traces, existing sound predictive analyses analyze
small, bounded windows of execution. As a result, they miss
predictive races involving accesses that are “far apart” in the
observed execution.

This paper focuses on the causally-precedes (CP) relation
introduced by Smaragdakis et al. [56]. CP is a subset of
HB that conservatively orders conflicting accesses that may
not race in some other execution. That is, all conflicting
accesses not ordered by CP are definitely data races in some
execution.2 In Figure 1(a), although wr(x)1

HB−−→ wr(x)2,
wr(x)1 6CP−−→ wr(x)2. In contrast, in Figure 1(b), wr(x)1 CP−−→
wr(x)2 because CP conservatively captures the fact that a
data race may not occur if the critical sections execute in the
reverse order. Smaragdakis et al. show how to compute CP
in polynomial time in the execution length. However, their
inherently offline analysis cannot scale to full executions,
and instead analyzes bounded execution windows of 500
consecutive events [56]. Section 3 motivates why developing
an online analysis for CP is challenging.

Our approach. This paper introduces a novel sound predic-
tive dynamic analysis called Raptor (Race predictor) that
provably computes the CP relation exactly (i.e., soundly and
completely). Raptor is inherently an online analysis because
it summarizes an execution’s behavior so far in the form of
analysis state, rather than needing to look at the entire exe-
cution so far. Raptor’s key insights lie in how it captures the
dependent, recursive nature of the CP relation.

We have implemented Raptor as a dynamic analysis for
Java programs. Although our prototype implementation is
largely unoptimized, it can analyze executions of real pro-
grams with hundreds of thousands or millions of events
within an hour or two. In contrast, Smaragdakis et al.’s anal-
ysis generally cannot scale beyond bounded windows of
thousands of events [56]. As a result, Raptor detects some
CP-races (conflicting accesses unordered by CP) that are
too “far apart” for the offline CP analysis (or other predic-
tive race detection analyses) to detect.

Raptor advances the state of the art by (1) being the first
online, sound predictive data race detection analysis and (2)
demonstrably scaling to full executions and finding real CP-
races that existing analyses cannot detect.

2. Definitions
This section gives definitions of events and of causally-
precedes (CP) and other relations. Then Section 3 motivates
the challenges of computing CP online.

The initial presentation of definitions and the Raptor anal-
ysis considers executions with writes, but not reads, to pro-
gram variables. Section 9 shows how to extend Raptor to
handle reads as well as writes.

2 More precisely, two conflicting accesses unordered by CP indicate either
a data race or a deadlock in some other execution [56].

2.1 Events
An execution consists of a series of events observed in a
total order. An event is one of wr(x)i, acq(m)i, or rel(m)i.
wr(x)i is the ith write to variable x in the observed total
order. acq(m)i and rel(m)i are the ith acquire and release
of lock m, respectively, in the observed total order.

We define a total order ≺trace for the observed order of
events: for two events e and e′, e ≺trace e

′ if e occurs before
e′ in the total order. We define a helper function thr(e) that
returns the thread identifier that executed event e.

2.2 Relations
The following presentation of relation definitions is closely
based on the presentation from prior work [56].

Program order. The program order (PO) relation, PO−−→,
orders events executed by the same thread. For two events e
and e′, e PO−−→ e′ if (e ≺trace e

′∧thr(e) = thr(e′))∨e = e′.

Happens-before. The happens-before (HB) relation [34],
HB−−→, is the smallest relation such that:

• Two events are ordered by HB if they are ordered by PO.
That is, for two events e and e′, e HB−−→ e′ if e PO−−→ e′.
• Release and acquire operations on the same lock (i.e.,

synchronization order) are ordered by HB. That is, for
two events e and e′, e HB−−→ e′ if e = rel(m)i ∧ e′ =
acq(m)j ∧ e ≺trace e

′ (which implies i < j).
• HB is closed under composition with itself. That is, for

two events e and e′, e HB−−→ e′ if ∃e′′ | e HB−−→ e′′ ∧
e′′

HB−−→ e′.

Causally-precedes. The causally-precedes (CP) relation [56],
CP−−→, is the smallest relation such that:

(a) Two critical sections on the same lock are ordered by
CP if they contain conflicting accesses (accesses to the
same variable by different threads). That is, rel(m)j

CP−−→
acq(m)k if there exist events e = wr(x)h and e′ = wr(x)i

such that e ≺trace e
′ ∧ thr(e) 6= thr(e′)∧ acq(m)j

PO−−→
e
PO−−→ rel(m)j ∧ acq(m)k

PO−−→ e′
PO−−→ rel(m)k.

(b) Two critical sections on the same lock are ordered by CP
if they contain events that are ordered by CP. Because
of the next rule, this rule can be expressed simply as
follows: rel(m)i

CP−−→ acq(m)j if acq(m)i
CP−−→ rel(m)j .

(c) CP is closed under left and right composition with HB.
That is, for two events e and e′, e CP−−→ e′ if ∃e′′ | e HB−−→
e′′

CP−−→ e′ ∨ e CP−−→ e′′
HB−−→ e′

The rest of this paper refers to the above rules as Rules (a),
(b), and (c), respectively, of the CP definition.

Note that CP, which is formed by relations from release
to acquire of the same lock and transitively with HB, is a
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subset of HB. Unlike PO and HB, CP is not reflexive and
thus not a partial order [56].

A CP-race exists when two conflicting accesses are not
ordered by the CP relation. That is, a CP-race exists between
two events e = wr(x)i and e′ = wr(x)j if e 6PO−−→ e′∧e′ 6PO−−→
e ∧ e 6CP−−→ e′ ∧ e′ 6CP−−→ e.

Smaragdakis et al. prove that the CP relation is sound [56].
In particular, if a CP-race exists, then there exists an execu-
tion that has (1) a true data race (i.e., two conflicting accesses
unordered by HB) or (2) a deadlock.

Example. In both executions of Figure 1 (page 1), wr(x)1 HB−−→
wr(x)2 because rel(m)1

HB−−→ acq(m)2 ∧ wr(x)1
PO−−→

rel(m)1 ∧ acq(m)2
PO−−→ wr(x)2. In Figure 1(a), wr(x)1 6CP−−→

wr(x)2. In contrast, in Figure 1(b), wr(x)1
CP−−→ wr(x)2

because rel(m)1
CP−−→ acq(m)2 ∧ wr(x)1

HB−−→ rel(m)1 ∧
acq(m)2

HB−−→ wr(x)2 (rel(m)1
CP−−→ acq(m)2 by Rule (a) of

the CP definition def; CP composes with HB by Rule (c)).

3. Problem, Background, and Motivation
In addition to introducing the causally-precedes (CP) rela-
tion, Smaragdakis et al. introduce an algorithm for detecting
CP-races in program executions [56]. Their algorithm en-
codes the recursive definition of CP in Datalog, guarantee-
ing polynomial-time execution in the size of the execution
trace. The algorithm is inherently offline because it funda-
mentally needs to “look back” at the entire execution trace.
Experimentally, Smaragdakis et al. find that their algorithm
does not scale to full program traces. Instead, they limit their
algorithm’s computation to bounded windows of 500 con-
secutive events [56].

This paper targets the challenge of developing an online
analysis for tracking the CP relation and detecting CP-races.
An online analysis must (1) compute CP soundly and com-
pletely; (2) maintain analysis state that summarizes the exe-
cution so far, without needing to maintain and refer to the en-
tire execution trace; and (3) analyze real program execution
traces using time and space that is “reasonable” for heavy-
weight in-house testing.

As Smaragdakis et al. explain [56], developing an online
analysis for CP is inherently challenging:

CP reasoning, based on [the definition of CP], is
highly recursive. Notably, Rule (c) can feed into Rule
(b), which can feed back into Rule (c). As a result, we
have not implemented CP using techniques such as
vector clocks, nor have we yet discovered a full CP
implementation that only does online reasoning (i.e.,
never needs to “look back” in the execution trace).

Other existing predictive analyses are either unsound (re-
porting false races), or (like the existing CP work [56]) are
limited to analyzing bounded windows of execution [16, 29,
30, 37, 51, 54]. Section 11 provides more details.
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Figure 2. An example execution in which wr(x)1
CP−−→ wr(x)2.

The double arrow indicates a CP relation established by Rule (a) of
the CP definition (called a “hard” CP edge by prior work [56]).

Figure 2 illustrates some of the challenges involved in
developing an online analysis for CP. In this example, the
writes are CP ordered because the critical sections on m
are CP ordered, which is true because the critical sec-
tions on n are CP ordered. More precisely, wr(x)1

CP−−→
wr(x)2 through the following logic: rel(q)1 CP−−→ acq(q)2

by Rule (a) implies acq(n)1
CP−−→ rel(n)2 by Rule (c),

which implies rel(n)1
CP−−→ acq(n)2 by Rule (b), which

implies acq(m)1
CP−−→ rel(m)2 by Rule (c), which im-

plies rel(m)1
CP−−→ acq(m)2 by Rule (b), which implies

wr(x)1
CP−−→ wr(x)2 by Rule (c).

However, at the event rel(m)2, an online analysis cannot
determine that acq(m)1

CP−−→ rel(m)2 (and thus rel(m)1
CP−−→

acq(m)2) because it is not yet knowable that acq(n)1 CP−−→
rel(n)2 (and thus rel(n)1 CP−−→ acq(n)2).

Furthermore, at wr(x)2, an online analysis cannot deter-
mine that wr(x)1 CP−−→ wr(x)2 because it is not yet knowable.
Not until wr(y)2 is it knowable that acq(n)1 CP−−→ rel(n)2 and
thus wr(x)1 CP−−→ wr(x)2.
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Now suppose instead that T1 executed its critical section
on t before its critical section on m. In that subtly different
execution, wr(x)1 6CP−−→ wr(x)2. A sound and complete on-
line analysis for CP must track analysis state that captures
the difference between these two different cases.

4. Raptor Overview
Raptor (Race predictor) is an online dynamic analysis that
computes CP ordering soundly and completely. To do so,
Raptor also computes HB and PO ordering, since the defini-
tion of CP relies on HB, and the definition of CP-race relies
on PO. This section overviews key features of Raptor.

Locksets. Most HB analyses represent analysis state using
vector clocks [25, 41, 49]. In contrast, Raptor’s analysis
state is in the form of “locksets.” Raptor’s locksets are most
similar to the locksets used by Goldilocks, a sound and
complete HB data race detector [21] (Section 11.2). The
Goldilocks algorithm is essentially the same as Raptor’s
algorithm for HB only. (The locksets used by Raptor and
Goldilocks are quite different from those used by lockset
analyses, which check a locking discipline and inherently
report false data races [17, 18, 46, 47, 52, 59]; Section 11.2.)

The basic idea of Raptor’s locksets is that they contain
synchronization objects—locks and threads—that are or-
dered by CP, HB, and PO. For example, if a lock m is an
element of the lockset HB(x8), it means that any future
event that acquires m is HB ordered to wr(x)8. Similarly,
T2 ∈ CP(y3) means that wr(y)3 is CP ordered with future
events by thread T2. Throughout the rest of the paper, we say
that a lock m or thread T is CP (or HB) ordered to an event
e if, for any future event e′ that acquires m or is executed by
T, respectively, e CP−−→ e′ (e HB−−→ e′).

Locksets for each access to a variable. As implied above,
rather than each variable x having CP, HB, and PO locksets,
in fact every access wr(x)i has its own CP, HB, and PO lock-
sets. Per-access locksets are needed for CP locksets in par-
ticular because of the nature of the CP relation: at wr(x)i+1,
it is not in general knowable whether wr(x)i CP−−→ wr(x)i+1.
For example, in Figure 2, even after wr(x)2 executes, Raptor
must continue to maintain information for wr(x)1 because
wr(x)1

CP−−→ wr(x)2 has not yet been established.
Maintaining locksets for every variable access would

seem to require massive time and space (proportional to the
length of the execution), making it as unscalable to full exe-
cution traces as prior work’s offline approach for computing
CP [56]. However, as we show, Raptor can safely delete an
access wr(x)i’s locksets as soon as it determines whether
wr(x)i+1 is CP ordered to wr(x)i.

Locksets for lock acquires. Raptor tracks CP, HB, and PO
locksets not just for variable accesses, but also for lock
acquire operations (e.g., acq(m)i). The reason is that Raptor
needs to detect whether acq(m)i

CP−−→ rel(m)j , which by
Rule (b) of the CP definition implies that rel(m)i

CP−−→

acq(m)j . For example, T3 ∈ CP(mi) means that for any
future event e, acq(m)i

CP−−→ e if thr(e) = T3.
Similar to locksets for variable accesses, maintaining a

lockset for each lock acquire might consume high time and
space proportional to the execution’s length. However, we
show how Raptor can safely delete an acquire acq(m)i’s
locksets once they are no longer needed—once no other CP
ordering is dependent on the possibility of acq(m)i being CP
ordered with a future rel(m).

In contrast, Goldilocks does not need or use locksets for
each variable access, nor locksets for lock acquires, since
it maintains only HB locksets [21].

Conditional CP locksets. As mentioned above, it is un-
knowable in general at an event wr(x)i+1 whether wr(x)i CP−−→
wr(x)i+1. This delayed knowledge is due to Rule (b) of
the CP definition, which states that rel(m)i

CP−−→ acq(m)j

if acq(m)i
CP−−→ rel(m)j—so a CP ordering might not be

known until rel(m)j executes. The knowledge of a CP or-
dering may be delayed even further since Rule (c) can “feed
into” Rule (b), which can feed back into Rule (c). This recur-
sive nature of the CP definition prevents immediate detection
of CP ordering.

Raptor maintains conditional CP (CCP) locksets to cap-
ture the fact that, at a given point in an execution, a CP order-
ing may or may not exist, depending on whether some other
CP ordering exists. An element n : mj in lockset CCP(xi)

means that a future rel(n) event is CP ordered to wr(x)i if
acq(m)j

CP−−→ rel(m)k for some future rel(m)k. As another
example, T : mj ∈ CCP(ni) means that acq(n)i is CP or-
dered to future events by thread T if acq(m)j

CP−−→ rel(m)k

for some future rel(m)k.

Outline of Raptor presentation. Section 5 describes Rap-
tor’s locksets and their elements in detail, and it presents
invariants maintained by Raptor’s locksets before and after
every event from the program execution trace. Section 6 in-
troduces the Raptor analysis that adds (and in a few cases, re-
moves) lockset elements at each execution event. Section 7
proves that the Raptor analysis in fact adheres to the pro-
posed invariants (proof details in submitted supplementary
material). Section 8 describes how Raptor removes “obso-
lete” locksets and detects CP-races. Until Section 9, the pa-
per considers only variable writes but not reads; Section 9
shows how to extend Raptor to support read events.

5. Raptor’s Analysis State
This section introduces the analysis state that Raptor main-
tains. Every lockset owner ρ, which can be a variable access
instance xi or lock acquire instance mi, has the following
locksets: PO(ρ), HB(ρ), CP(ρ), and CCP(ρ). In general,
elements of locksets are threads T and locks m, with a few
caveats: HB(ρ) maintains an index for each lock element
(e.g., mj); and each CCP(ρ) element includes an associated
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lock instance upon which CP ordering is conditional (e.g.,
m : nj or T : nj). In addition, each lockset for a variable in-
stance xi can contain a special element ξ, which indicates
ordering between wr(x)i and wr(x)i+1.

Figure 3 shows invariants that the Raptor analysis main-
tains for every lockset owner ρ. The rest of this section ex-
plains these invariants in detail.

5.1 Program Order Lockset: PO(ρ)

According to the PO invariant in Figure 3, PO(ρ) contains
all locks and threads that are PO ordered with eρ. From the
definition of PO, we know that only one thread (the thread
that executes eρ) will be PO ordered to eρ. According to the
invariant, no locks will ever be PO ordered to eρ.

In addition, for any ρ = xh, PO(xh) may contain the
special element ξ, which indicates that wr(x)h is PO or-
dered with the next access to x, i.e., wr(x)h PO−−→ wr(x)h+1.
(Raptor does not strictly need ξ in PO(xh) to indicate
wr(x)h

PO−−→ wr(x)h+1, since PO(xh) does not add new
threads or locks after wr(x)h executes. However, since Rap-
tor needs ξ for CP and CCP locksets, it adds ξ to PO and HB
locksets for consistency.)

5.2 Happens-Before Lockset: HB(ρ)

The HB(ρ) lockset contains threads and locks that are HB
ordered to eρ. Figure 3 states three invariants for HB(ρ): the
HB, HB-index, and HB-critical-section invariants.

The HB invariant defines which threads and locks are in
HB(ρ). Each thread or lock is HB ordered to eρ, meaning
that some event (before e) by the same thread or release of
the same lock, respectively, is HB ordered to eρ. This prop-
erty implies that if any future event (e or a later event) exe-
cutes on the same thread or acquires the same lock, respec-
tively, it will be HB ordered to eρ. In addition, like PO(ρ),
HB(ρ) can contain a special element ξ, which indicates, for
ρ = xh only, that wr(x)h HB−−→ wr(x)h+1.

According to the HB-index invariant, every lock m in
HB(ρ) has a superscript i (i.e., mi) that specifies the earliest
lock release that is HB ordered to eρ. For example, mi ∈
HB(ρ) means that rel(m)i is HB ordered to eρ (i.e., eρ

HB−−→
rel(m)i), but no earlier release of m is HB ordered to eρ.
Raptor tracks this property in order to know, at some future
event acq(m)j , which critical section mi needs to be CP
ordered with mj (i.e., acq(m)i

CP−−→ rel(m)j) in order to
imply that eρ

CP−−→ acq(m)j (by Rules (b) and (c) of the CP
definition).

According to the HB-critical-section invariant, for ρ =
xh only, mi in HB(ρ) may have a subscript ∗ (i.e., mi

∗),
which means that not only eρ

HB−−→ rel(m)i, but also that eρ
executed inside the acq(m)i–rel(m)i critical section. Raptor
must track this property in order to apply Rule (a) of the CP
definition precisely.

5.3 Causally-Precedes Lockset: CP(ρ)

Analogous to HB(ρ) for HB ordering, each CP(ρ) lockset
contains locks and threads that are CP ordered to eρ. How-
ever, at an event e′, it is not in general possible to tell whether
eρ

CP−−→ e′, due to Rule (b) of the CP definition. Thus, a lock
or thread σ is not necessarily in CP(ρ) even after an event
e′ such that appl(σ, e′) ∧ eρ

CP−−→ e′.
This property of CP presents two main challenges. First,

CP ordering may be determined later, dependent on other
CP relations, according to Rule (b) of the CP definition.
Raptor introduces the CCP(ρ) lockset (described below)
to capture potential CP ordering that may be determined
later. For every lock and thread that is ordered to eρ, Raptor
captures that fact either eagerly using CP(ρ) or lazily using
CCP(ρ), as the CP invariant in Figure 3 shows.

Second, as a result of computing CP lazily, how does
Raptor determine whether there is a CP-race between two
events wr(x)i and wr(x)i+1? In particular, suppose that at
some event after thread T executes wr(x)i+1, Raptor deter-
mines that T is CP ordered to wr(x)i; then how does Raptor
know whether wr(x)i CP−−→ wr(x)i+1? Raptor addresses this
challenge by using the special thread-like element ξ that es-
sentially represents the thread T up to event wr(x)i+1 only,
so ξ ∈ CP(xi) only if wr(x)i CP−−→ wr(x)i+1.

The CP-rule-A invariant (Figure 3) covers a case for
which Raptor always computes CP eagerly: when two crit-
ical sections on the same lock have conflicting events (e.g.,
wr(x)j and wr(x)k), according to Rule (a) of the CP defini-
tion. In this case, the invariant states that if two critical sec-
tions, mh and mi, are CP ordered by Rule (a) alone, then T ∈
CP(mi) as soon as wr(x)k executes (T = thr(wr(x)k)). The
CP-rule-A invariant is useful in proving that Raptor main-
tains the CP invariant (Section 7).

5.4 Conditionally Causally-Precedes Lockset: CCP(ρ)

Rule (b) of the CP definition states that rel(n)k CP−−→ acq(n)j

if acq(n)k
CP−−→ rel(n)j . To account for this rule, Raptor

introduces the CCP(ρ) lockset, which contains elements of
the form σ : nk, which means that σ is CP ordered with eρ
if acq(n)k

CP−−→ rel(n)j , where nj is the current ongoing
critical section of n.

The CP invariant in Figure 3 shows that for every CP
ordering, Raptor captures it eagerly in a CP lockset or lazily
in a CCP lockset (or both). A further constraint, codified in
the CCP-constraint invariant, is that σ :nk ∈ CCP(ρ) only
if a critical section on lock n is ongoing. As Section 6 shows,
when n’s current critical section ends (at rel(n)j), Raptor
either (1) determines whether acq(n)k CP−−→ rel(n)j , or (2) it
identifies another lock q that has an ongoing critical section
such that it is correct to add some σ :qf to CCP(ρ).

Like CP(ρ), when ρ = xi, CCP(ρ) can contain the
special thread-like element ξ. More precisely, ξ : nk ∈
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Let e be any event e in the program trace. The following invariants hold for the point in the trace immediately before e.
Let e∗ = wr(x)h+1 if e = wr(x)h; otherwise (e is a lock acquire or release event), e∗ is an “invalid event” that matches no real event.
We define the boolean function appl(σ, e′) that returns whether event e′ “applies to” lockset element σ:

appl(σ, e′) :=


thr(e′) = T if σ is a thread T

∃i | e′ = rel(m)i if σ is a lock m

e′ = e∗ otherwise (σ is ξ)
The following invariants hold for every lockset owner ρ. For each lockset owner ρ, let eρ be the event corresponding to ρ, i.e., eρ = wr(x)h

if ρ = xh, or eρ = acq(m)h if ρ = mh.

[PO] PO(ρ) =
{
σ | σ is not a lock ∧

(
∃e′ | appl(σ, e′) ∧ eρ

PO−−→ e′ ≺trace e
) }

[HB] HB(ρ) =
{
σ |
(
∃e′ | appl(σ, e′) ∧ eρ

HB−−→ e′ ≺trace e
) }

[HB-index] mi ∈ HB(ρ)⇐⇒
(
eρ 6

HB−−→ rel(m)i−1 ∧ eρ
HB−−→ rel(m)i ≺trace e

)
[HB-critical-section] mi

∗ ∈ HB(ρ)⇐⇒
(
acq(m)i

PO−−→ eρ
PO−−→ rel(m)i ∧ eρ = wr(x)h ∧ eρ ≺trace e

)
[CP] CP(ρ) ∪

{
σ |
(
∃nk | σ :nk ∈ CCP(ρ) ∧ ∃j | rel(n)k CP−−→ acq(n)j ≺trace e

}
=
{
σ |
(
∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e
) }

[CP-rule-A]
(
ρ = mh ∧ ∃x,T, i, j, k | eρ

PO−−→ wr(x)j
PO−−→ rel(m)h ≺trace acq(m)i

PO−−→ wr(x)k
PO−−→ rel(m)i ∧ wr(x)k ≺trace

e ∧ thr(wr(x)k) = T
)

=⇒ T ∈ CP(ρ)

[CCP-constraint] ∃σ :nk ∈ CCP(ρ) =⇒
(
∃j | acq(n)j ≺trace e ∧ rel(n)j 6≺trace e

)
Figure 3. The invariants maintained by the Raptor analysis before and after every event in the observed total order.

CCP(xi) means that wr(x)i CP−−→ wr(x)i+1 if acq(n)k
CP−−→

rel(n)j , where nj is the current ongoing critical section of n.

6. The Raptor Analysis
Raptor is an online dynamic analysis that maintains the in-
variants shown in Figure 3 and explained in Section 5. For
each event e in the observed total order, Raptor updates the
analysis state, which consists of the locksets PO(ρ), HB(ρ),
CP(ρ), and CCP(ρ) for each lockset owner ρ. Assuming
that immediately before e, the analysis state satisfies the in-
variants, then at event e, Raptor modifies the analysis state so
that it satisfies the invariants immediately after e. Section 7
(with details in supplementary material) proves this claim.

Raptor modifies its analysis state at event e by adding, and
in some cases removing, elements from ρ’s locksets. To dif-
ferentiate the state immediately after e from the state imme-
diately before e, we use the following notation in the analy-
sis. The analysis represents the state immediately before e as
PO(ρ), HB(ρ), CP(ρ), and CCP(ρ). The analysis repre-
sents the state immediately after e by adding a superscript +,
i.e., PO(ρ)+, HB(ρ)+, CP(ρ)+, and CCP(ρ)+.

6.1 Initialization
For every lockset owner ρ, whether it is a variable instance
xi or a lock instance mi, its locksets are initially empty,
i.e., PO(ρ) = HB(ρ) = CP(ρ) = CCP(ρ) = ∅. This
initial state conforms to Figure 3’s invariants for the point in
execution before any events execute.

In addition, to simplify checking for CP-races, the anal-
ysis assumes a “fake” initial access x0 for every program
variable x. The analysis initializes PO(x0) to ξ, as Algo-
rithm 1 shows. (The other locksets for x0 are ∅.) This initial

state ensures that the first access to x, wr(x)1, will appear to
be PO-ordered to the prior access to x, without requiring any
logic to handle this corner case.

Algorithm 1 Initialize locksets
for all variables x do

PO(x0)← { ξ }
end for
. All other locksets are initially empty

6.2 Handling Write Events
At a program’s write to a potentially shared variable, i.e.,
e = wr(x)i, by thread T, the analysis performs the actions
in Algorithm 2. The analysis applies Rule (a) of the CP def-
inition (conflicting critical sections are CP ordered); checks
for PO, HB, and CP ordering with the prior access wr(x)i−1;
and initializes the locksets for xi.

Applying Rule (a). Lines 2–7 of Algorithm 2 show how the
analysis applies Rule (a). The helper function heldBy(T)
returns the set of locks currently held by thread T (e.g., locks
with active critical sections executed by T). For each lock m
held by T, the analysis checks whether a prior access to x
executed in a critical section on m, but by a different thread.

If the analysis detects a conflicting critical section mj ,
it adds T to CP(mj), satisfying the CP-rule-A invariant
(Figure 3). Later, when T releases m, the analysis updates
other CP() locksets, as Section 6.4 describes.

Checking ordering with prior access. The current event
wr(x)i may be CP ordered with the prior access wr(x)i−1,
but the CP ordering may depend on later events. As Section 5
described, the Raptor analysis handles this situation by using
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Algorithm 2 wr(x)i by T

1: . Apply Rule (a)
2: for all m ∈ heldBy(T) do
3: if ∃j∃h | mj

∗ ∈ HB(xh) ∧ T /∈ PO(xh) then
4: . Let j be the maximum satisfying index.
5: CP(mj)+ ← CP(mj)+ ∪ {T}
6: end if
7: end for
8: . Add ξ to represent T at wr(x)i

9: if T ∈ PO(xi−1) then
10: PO(xi−1)+ ← PO(xi−1)+ ∪ {ξ}
11: end if
12: if T ∈ HB(xi−1) then
13: HB(xi−1)+ ← HB(xi−1)+ ∪ {ξ}
14: end if
15: if T ∈ CP(xi−1) then
16: CP(xi−1)+ ← CP(xi−1)+ ∪ {ξ}
17: end if
18: for all mj | T :mj ∈ CCP(xi−1) do
19: CCP(xi−1)+ ← CCP(xi−1)+ ∪ {ξ :mj}
20: end for
21: . Initialize locksets for xi

22: PO(xi)+ ← {T}
23: HB(xi)+ ← {T} ∪ {mj

∗ | mj ∈ heldBy(T)}

a special thread-like element ξ in locksets for xi−1 that
indicates ordering with wr(x)i.

Lines 9–20 of Algorithm 2 show how the analysis handles
this case. If T ∈ CP(xi−1), then wr(x)i−1 CP−−→ wr(x)i,
and thus the analysis adds ξ to CP(xi−1). The same logic
applies for HB, CP, and CCP locksets. Notably, for any mj

such that T : mj ∈ CCP(xi−1), wr(x)i−1 CP−−→ wr(x)i

if acq(m)j
CP−−→ rel(m)k (where mk is the current critical

section on m), and so the analysis adds ξ :mj to CCP(xi−1).

Initializing locksets for current access. Lines 22–23 initial-
ize locksets for xi. (Before this point in the event trace, all
locksets for xi are ∅; Section 6.1.) In addition to adding T
to PO(xi) and HB(xi), the analysis adds mj

∗ to HB(xi) for
each ongoing critical section on mj by T, satisfying the HB-
critical-section invariant (Figure 3).

6.3 Handling Acquire Events

At a program’s acquire of a lock, i.e., e = acq(m)i by thread
T, the analysis performs the actions in Algorithm 3. The
analysis transfers HB and CP ordering from m to T for all
ρ; adds new CCP(ρ) elements for potentially CP-ordered
critical sections; and initializes the locksets for mi.

Transferring ordering. HB and CP are both closed under
right-composition with HB. Thus, after the current event
e = acq(m)i by T, any eρ that was HB or CP ordered
to m is now also HB or CP ordered, respectively, to T. If
m ∈ CP(ρ), then eρ

CP−−→ acq(m)i, and thus the analysis

Algorithm 3 acq(m)i by T

1: . Transfer ordering from m to T
2: for all ρ do
3: if m ∈ CP(ρ) then
4: CP(ρ)+ ← CP(ρ)+ ∪ {T}
5: end if
6: for all nk | m :nk ∈ CCP(ρ) do
7: CCP(ρ)+ ← CCP(ρ)+ ∪ {T :nk}
8: . No effect if ∃k′ < k | T :nk

′ ∈ CCP(ρ)+

9: end for
10: if ∃j | mj ∈ HB(ρ) ∨mj

∗ ∈ HB(ρ) then
11: HB(ρ)+ ← HB(ρ)+ ∪ {T}
12: . Add new CCP element
13: CCP(ρ)+ ← CCP(ρ)+ ∪ {T :mj}
14: . No effect if ∃j′ < j | T :mj

′ ∈ CCP(ρ)+

15: end if
16: end for
17: . Initialize locksets for mi

18: HB(mi)+ ← {T}
19: PO(mi)+ ← {T}

adds T to CP(ρ) (lines 3–5), satisfying the CP invariant.
Similarly, lines 10–11 transfer HB ordering from m to T.

The analysis also transfers conditional CP ordering (CCP
ordering), in lines 6–9. For any lock critical section nk, if
m : nk ∈ CCP(ρ), then that means eρ

CP−−→ rel(m)i−1

if acq(n)k
CP−−→ rel(n)j , where nj is an ongoing critical

section. After the current event acq(m)i, since HB right-
composes with CP, eρ

CP−−→ acq(m)i if acq(n)k
CP−−→

rel(n)j . Thus, the analysis adds T :nk to CCP(ρ).

Adding new CCP ordering. For any eρ such that eρ
HB−−→

rel(m)j for some j, eρ may actually be CP ordered to T, i.e.,
eρ

CP−−→ acq(m)i, if the critical sections on m turn out to
be CP ordered. Line 13 of Algorithm 3 handles this case by
adding T :mj to CCP(ρ) when eρ

HB−−→ rel(m)j .

Initializing locksets. Lines 18–19 initialize locksets for mi.
Since any further event executed by T will be PO and HB
ordered with acq(m)i, the analysis adds T to HB(mi) and
PO(mi), satisfying the PO and HB invariants (Figure 3).
(The analysis adds T to PO(mi) only to satisfy Figure 3’s
PO invariant. It never uses PO(mi).)

6.4 Handling Release Events

At a program’s release of a lock, i.e., e = rel(m)i by
thread T, the analysis performs the actions in Algorithm 4,
called the “pre-release” algorithm, followed by the actions
in Algorithm 5, called the “release” algorithm. We divide
Raptor’s analysis actions into two algorithms in order to
separate out two sets of changes to CCP(ρ) elements: the
pre-release algorithm adds elements to CCP(ρ), some of
which the release algorithm will use and then remove.
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The pre-release algorithm applies Rule (b) of the CP def-
inition, by adding CP ordering and transferring CCP order-
ing to be dependent on locks other than m, to prepare for the
removal of all CCP elements dependent on m. The release
algorithm operates on the analysis state modified by the pre-
release algorithm. The release algorithm transfers CP and
HB ordering from T to m, and it removes all CCP elements
that are dependent on m.

After Raptor performs the pre-release algorithm, Fig-
ure 3’s invariants still hold—for the execution point before
e. After Raptor performs the release algorithm, Figure 3’s
invariants hold, for the execution point after e.

6.4.1 Pre-release Algorithm (Algorithm 4)
Applying Rule (b) for CP locksets. Lines 3–6 of Algo-
rithm 4 show how the analysis applies Rule (b) of the CP
definition. For any σ :mj ∈ CCP(ρ), σ is CP ordered to eρ
if acq(m)j

CP−−→ rel(m)i.3 Line 4 checks this condition; if it
is true, line 5 adds σ to CP(ρ).

Algorithm 4 Pre-release of m by T

1: for all ρ do
2: . Trigger CCP according to Rule (b); transfer CCP
3: for all σ, j | σ :mj ∈ CCP(ρ) do
4: if ∃l ≥ j | T ∈ CP(ml) then
5: CP(ρ)+ ← CP(ρ)+ ∪ {σ}
6: end if
7: for all nk | (∃l ≥ j | T :nk ∈ CCP(ml)) do
8: CCP(ρ)+ ← CCP(ρ)+ ∪ {σ :nk}
9: . No effect if ∃k′ < k | σ :nk′ ∈ CCP(ρ)+

10: end for
11: end for
12: end for

Applying Rule (b) for CCP locksets. Analogous to lines 3–
6’s handling of CP locksets, lines 7–10 handle CCP locksets.
For every σ :mj ∈ CCP(ρ) (line 3) and T :nk ∈ CCP(mj)

(line 7),4 σ is CP ordered to eρ if acq(m)j
CP−−→ rel(m)i,

which in turn is true if acq(n)k CP−−→ rel(n)h (where nh is
the ongoing critical section on n). Thus, σ is CP ordered to
eρ if acq(n)k CP−−→ rel(n)h, so line 8 adds σ :nk to CCP(ρ).

We note that although the analysis could in theory detect the
above CP and CCP orderings earlier than at rel(m)i, it is
critical that the analysis detect them no later than rel(m)i,
since the release algorithm removes all σ :mj elements.

6.4.2 Release Algorithm (Algorithm 5)
Transferring ordering. HB and CP are both closed under
right-composition with HB. Thus, after the current event
e = rel(m)i by T, if T was HB or CP ordered to eρ, m

3 More precisely, the analysis checks for any l ≥ j | acq(m)l
CP−−→

rel(m)i, since CP is closed under left-composition with HB.
4 More precisely, the analysis checks for T :nk ∈ CCP(ml) where l ≥ j,
since CP is closed under left-composition with HB.

is now HB or CP ordered to eρ. Lines 3–12 show how the
analysis transfers ordering from T to m. If T ∈ CP(ρ),
then the analysis adds m to CP(ρ) (lines 3–5). Similar logic
transfers HB ordering from T to m (lines 9–12).

Algorithm 5 rel(m)i by T

1: for all ρ do
2: . Transfer ordering from T to m
3: if T ∈ CP(ρ) then
4: CP(ρ)+ ← CP(ρ)+ ∪ {m}
5: end if
6: for all nk | n 6= m ∧ T :nk ∈ CCP(ρ) do
7: CCP(ρ)+ ← CCP(ρ)+ ∪ {m :nk}
8: end for
9: if T ∈ HB(ρ) then

10: HB(ρ)+ ← HB(ρ)+ ∪ {mi}
11: . No effect if ∃i′ < i | mi′ ∈ HB(ρ)+

12: end if
13: . Remove CCP elements conditional on m
14: CCP(ρ)+ ← CCP(ρ)+ \ {σ :mj ∈ CCP(ρ) }
15: end for

Lines 6–8 transfer CCP ordering. For any lock instance
nk (n 6= m) such that T : nk ∈ CCP(ρ), T is CP ordered to
eρ if acq(n)k

CP−−→ rel(n)j , where nj is n’s ongoing critical
section. Since CP right-composes with HB, m is CP ordered
to eρ if acq(n)k CP−−→ rel(n)j . Thus, the analysis adds m :nk

to CCP(ρ), satisfying the CP invariant (Figure 3).

Removing CCP ordering. Line 14 removes all CCP el-
ements dependent on m, i.e., all σ : mj elements from
CCP(ρ), satisfying the CCP-constraint invariant (Figure 3).
Removing these elements is necessary: it would be incorrect
for the analysis to retain these elements, e.g., acq(m)j

CP−−→
rel(m)i+1 does not imply that σ is CP ordered to eρ. As de-
scribed above, before the release algorithm removes all CCP
elements dependent on m, the pre-release algorithm detects
CP and CCP orderings that are dependent on m.

6.5 Example
This section presents one example of how Raptor maintains
its state during a program execution. For additional, more
complex examples, please see Appendix A in the submitted
supplementary material.

Figure 4 shows a simple execution and how Raptor main-
tains its analysis state. The last column shows the analysis
state (for modified locksets only) after each event.

Up to acq(m)2, the analysis detects only PO and HB or-
dering. At acq(m)2, in addition to transferring HB ordering
from m to T2, the analysis adds T2 :m1 to all CCP(ρ) such
that eρ

HB−−→ acq(m)2.
At wr(x)2, it is not knowable from the events so far

that wr(x)1 CP−−→ wr(x)2. Raptor adds ξ : m1 to CCP(x1),
indicating that rel(m)1

CP−−→ acq(m)2 implies wr(x)1
CP−−→

wr(x)2. At wr(y)2, the analysis applies Rule (a) of the CP
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T1 T2 Locksets after events
wr(x)1 PO(x1) = {T1}, HB(x1) = {T1}
acq(m)1 PO(m1) = {T1}, HB(m1) = {T1}
wr(y)1 PO(y1) = {T1}, HB(y1) = {T1, m1

∗}
rel(m)1 HB(x1) = HB(m1) = {T1, m1}

acq(m)2 HB(x1) = HB(m1) = {T1, T2, m1}
CCP(x1) = CCP(m1) = {T2 :m1}
HB(y1) = {T1, T2, m1

∗}, CCP(y1) = {T2 :m1}
PO(m2) = {T2}, HB(m2) = {T2}

wr(x)2 PO(x2) = {T2}, HB(x2) = {T2, m2
∗}

CCP(x1) = {T2 :m1, ξ :m1}
HB(x1) = {T1, T2, m1, ξ}

wr(y)2 CP(m1) = {T2}, HB(y1) = {T1, T2, m1
∗, ξ}

PO(y2) = {T2}, HB(y2) = {T2, m2
∗}

CCP(y1) = {T2 :m1, ξ :m1}
rel(m)2 CP(m1) = {T2, m}, HB(m2) = {T2, m2}

CP(x1) = CP(y1) = {T2, m, ξ}

Figure 4. An execution with no CP-races. The last column shows
the changes that Raptor makes to its analysis state after each event.

definition, adding T2 to CP(m1). Although it is possible to
detect that wr(x)1 CP−−→ wr(x)2 and wr(y)1

CP−−→ wr(y)2 at
this point, the analysis defers this logic until rel(m)2.

At rel(m)2, the analysis applies Rule (b) of the CP def-
inition, adding ξ to CP(x1) and CP(y1) because T2 ∈
CP(m1) and ξ :m1 ∈ CCP(x1) and ξ :m1 ∈ CCP(y1).

7. Correctness
This section overviews our stategy of proving that Raptor
soundly and completely tracks CP. The proof details are in
the submitted supplementary material.

Theorem 1. After every event, Raptor (i.e., the analysis in
Algorithms 1–5) maintains the invariants in Figure 3.

We prove this theorem in Appendix B in the submitted
supplementary material. The proof is by induction on the
total order of events. We only prove that the CP invariant
holds, and argue that it is relatively straightforward to see
that Raptor maintains the other invariants after each event.

Theorem 2. An execution has a CP-race if and only if
Raptor reports a race for the execution.

Appendix B in the submitted supplementary material proves
this theorem, which follows naturally from Theorem 1.

8. Removing Obsolete Locksets and
Detecting CP-Races

Raptor maintains locksets for every variable access and lock
acquire. This property makes the analysis state’s size pro-
portional to the execution’s length, which is unscalable in
terms of space as well as time, since the analysis sometimes
iterates over all locksets.

Fortunately, for real (non-adversarial) program execu-
tions, most locksets become obsolete—meaning that they
will not be needed again—relatively quickly. Raptor detects
and removes obsolete locksets, saving both space and time.

A variable access xi’s locksets becomes obsolete once
the analysis determines whether or not the corresponding
access (wr(x)i) is involved in a CP-race with the next access
(wr(x)i+1). Thus, detecting CP-races is naturally part of
checking for obsolete locksets.

Removing obsolete variable locksets and detecting CP-races.
Raptor uses xi’s locksets for two reasons: (1) to apply Rule
(a) of the CP definition if wr(x)i and wr(x)j execute in crit-
ical sections on the same lock m and (2) to detect whether
wr(x)i

CP−−→ wr(x)i+1. Algorithm 6 shows the conditions
for determining whether wr(x)i is obsolete or CP-races
with wr(x)i+1. If Raptor has determined that wr(x)i CP−−→
wr(x)i+1 or wr(x)i PO−−→ wr(x)i+1, then according to the PO
and CP invariants (Figure 3), ξ ∈ CP(xi) ∪ PO(xi); line 2
checks this condition. If true, xi’s locksets are obsolete: they
will not be needed again, so the algorithm removes them.
The algorithm denotes removal by setting xi’s locksets to
∅ (line 4)—essentially the same nonexistent state that xi’s
locksets had before wr(x)i executed.

Algorithm 6 Detect and remove obsolete locksets and
report CP-races for xi

1: if wr(x)i+1 has executed then
2: if ξ ∈ CP(xi) ∪ PO(xi) then
3: . No CP-race between wr(x)i and wr(x)i+1

4: PO(xi)+ ← ∅ , HB(xi)+ ← ∅ ,
CP(xi)+ ← ∅ , CCP(xi)+ ← ∅

5: else if @mj | ξ :mj ∈ CCP(xi) then
6: Report CP-race between wr(x)i and wr(x)i+1

7: end if
8: end if

Raptor can say for certain that wr(x)i 6CP−−→ wr(x)i+1 if
ξ ∈ CP(xi) is definitely impossible. According to Raptor’s
analysis (Algorithms 1–5), ξ ∈ CP(xi) is possible only if
∃mj | ξ :mj ∈ CCP(xi) (line 5). If not, the analysis knows
wr(x)i 6CP−−→ wr(x)i+1 and reports a CP-race.

When the execution terminates (i.e., after the last event in
the observed total order), we assume that no thread holds any
lock.5 As a result, according to the CCP-constraint invariant
(Figure 3), line 5 in Algorithm 6 evaluates to true for every xi

by the time the execution terminates. Thus for every wr(x)i–
wr(x)i+1 pair for which Raptor has not already ruled out
a CP-race (via line 2 evaluating to true), Raptor eventually
reports a CP-race.

Removing obsolete lock locksets. Raptor’s analysis uses
locksets for lock instances, such as mj for acq(m)j , to de-
tect CP-ordered critical sections, in order to be able to apply
Rule (b) of the CP definition. Once mj’s locksets’ elements
can no longer trigger Rule (b), mj’s locksets are obsolete.

5 If an execution does not satisfy this condition, Raptor can simulate the re-
lease of all held locks, by performing the pre-release and release algorithms
(Algorithms 4 and 5) for each held lock.
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Algorithm 7 Detect and remove obsolete locksets for mj

1: if rel(m)j has executed then
2: if @ρ | ρ 6= mj ∧

(
mj ∈ HB(ρ) ∨ mj

∗ ∈ HB(ρ) ∨
(∃i ≤ j | σ :mi ∈ CCP(ρ))

)
∧m /∈ CP(ρ) then

3: PO(mj)+ ← ∅ , HB(mj)+ ← ∅ ,
CP(mj)+ ← ∅ , CCP(mj)+ ← ∅

4: end if
5: end if

Algorithm 7 shows the condition for mj’s locksets being
obsolete. mj’s locksets may be needed again if, for any ρ,
mj appears in HB(ρ) or an element dependent on mi (such
that i ≤ j) appears in CCP(ρ)—unless m ∈ CP(ρ), in
which case mj is not needed by ρ’s locksets. Line 2 shows
the exact condition; if it evaluates to true, then the pre-
release algorithm (Algorithm 4) definitely will not use mj’s
locksets anymore, so the algorithm implicitly removes them
by setting them to ∅.

9. Handling Read Events
So far we have presented Raptor as an analysis that handles
only writes. However, in order to detect CP-races soundly
and completely, Raptor must handle reads differently from
writes, since two reads do not race with each other. This
section overviews the changes to Raptor to handle reads
correctly: representing locksets for read accesses; detecting
write–read and read–write CP-races; and removing locksets
in the presence of reads. These changes do not require addi-
tional ideas, but they add some complexity. Appendix C in
the submitted supplementary material provides detailed al-
gorithms that support reads as well as writes.

Detecting write–read races. An execution’s writes are ei-
ther totally ordered by CP−−→ ∪ PO−−→, or there is a CP-race.
In contrast, reads are not totally ordered in a CP-race-free
execution. For a write wr(x)i, Raptor must check if each
thread’s following read that comes before wr(x)i+1 is CP
ordered with wr(x)i. Raptor extends the special element ξ to
one special element per thread, ξT, which denotes that T’s
read of x is ordered with the the preceding write wr(x)i.

If a thread T performs multiple reads to x between wr(x)i

and wr(x)i+1, Raptor safely ignores checking for write–read
CP-races: if a subsequent read is involved in a write–read
CP-race, then the first read is involved in a write–read race.

Since a write may race with each thread’s following read,
xi’s locksets are not obsolete until Raptor determines that no
thread’s read between wr(x)i and wr(x)i+1 is in a CP-race
with wr(x)i. Thus, we extend the variable removal and CP-
race check from Algorithm 6 to check for ξT for each thread
T that read x between wr(x)i and wr(x)i+1.

Detecting read–write races. For each thread that reads x
between wr(x)i and wr(x)i+1 in the total order, Raptor must
check for a read–write CP-race. Raptor uses lockset owners
of the form xiT for each thread T that reads x between wr(x)i

and wr(x)i+1. Raptor uses xiT’s locksets to detect ordering
from T’s read of x to wr(x)i+1, in order to detect read–write
races and to apply Rule (a) of the CP definition.

If a thread T performs multiple reads to x between wr(x)i

and wr(x)i+1, Raptor only needs to track the latest read: if
an earlier read is involved in a read–write race, then the later
read is involved in a read–write race. Raptor thus maintains
xiT’s locksets for the latest read by T only, resetting the
locksets at each read by T prior to the next write (wr(x)i+1).

10. Evaluation
This section evaluates the performance and CP-race cover-
age of our implementation of the Raptor analysis.

10.1 Implementation
We have implemented the Raptor analysis, including sup-
port for reads, in RoadRunner, a dynamic analysis frame-
work for concurrent programs [27]. RoadRunner instru-
ments Java bytecode dynamically at class loading time, gen-
erating events of memory accesses (field and array element
accesses) and synchronization events (e.g., lock acquire, re-
lease, wait, and resume; thread fork, start, terminate, and
join; and volatile read and write).

Handling non-lock synchronization. The CP relation han-
dles lock-based synchronization, but not other forms of
synchronization such as volatile accesses and thread fork
and join. Our implementation conservatively translates each
volatile variable access so that a critical section on a lock
unique to the variable surrounds the access, which creates
CP ordering between accesses to the same volatile variable
where at least one is a write. The implementation handles
thread events similarly by generating small critical sections
containing conflicting accesses, thus creating CP ordering
for fork and join. Smaragdakis et al. translate these synchro-
nization operations similarly before feeding them to their
Datalog implementation [56].

The implementation similarly establishes HB edges from
static class initializers to reads of initialized static fields [36].

Removing obsolete locksets and reporting CP-races. The
implementation follows the logic from Algorithms 6 and 7,
extended to handle read accesses (Section 9), in order to re-
move obsolete locksets and report CP-races. However, in-
stead of executing these algorithms directly (e.g., periodi-
cally pass over all non-obsolete locksets), the implementa-
tion uses reference counting to identify obsolete locksets.

For each variable access (e.g., xi or xiT), the implementa-
tion keeps track of the number of ξ and ξT elements that need
to be added to CP(xi)∪PO(xi) (or CP(xiT)∪PO(xiT)) be-
fore the analysis can be certain that no CP-race exists. Once
this number reaches zero, the implementation concludes that
wr(x)i (or rd(x)iT) does not race with a following element,
and thus its locksets are obsolete.

The implementation tracks the numbers of remaining ξ :
mj and ξT :mj elements in CCP(xi) (or CCP(xiT)). If any
of these numbers drop to zero, and the corresponding ξ or ξT
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element is not in CCP(xi) (or CCP(xiT)), the implementa-
tion reports a CP-race.

Optimizations. Our prototype implementation of Raptor is
largely unoptimized. While we think there is significant op-
portunity for optimization to reduce unnecessary or redun-
dant work, we also believe that designing and implementing
effective optimizations would be a major undertaking (e.g.,
designing the “right” fast-path lookups while avoiding huge
memory overheads).

We have however implemented the following optimiza-
tion out of necessity. Before the pre-release algorithm (Al-
gorithm 4) iterates over all ρ with active locksets, it pre-
computes the following information once: (1) the maximum
j such that ∃l ≥ j | T ∈ CP(ml) and (2) for each j, the
set of nk such that ∃l ≥ j | T : nk ∈ CCP(ml). This pre-
computation enables quick lookups at lines 4–10, dramati-
cally outperforming an unoptimized pre-release algorithm.

10.2 Methodology
We have evaluated Raptor on two sets of benchmarks:

• Benchmarks evaluated by Smaragdakis et al. [56] that we
were able to obtain and get to run. Of their benchmarks
that we do not include, all except StaticBucketMap exe-
cute fewer than 1,000 events.
• The DaCapo benchmarks [5], version 9.12 bach, with

the small workload size. We exclude several programs
that do not run out of the box with RoadRunner. We are
working to get results for the other DaCapo programs,
based on directions from the RoadRunner authors for
running these programs with RoadRunner.

The experiments run on a system with 4 Intel Xeon E5-4620
8-core processors (32 cores total) running Linux 2.6.32.

Datalog CP implementation. We have extended our Rap-
tor implementation to generate a trace of events in a for-
mat that can be processed by Smaragdakis et al.’s Data-
log CP implementation [56], which they have made avail-
able to us. Our experiments run the Datalog CP implemen-
tation with a bounded window size of 500 events, which
matches prior work’s evaluation [56]. The Raptor and Dat-
alog CP implementation analyze identical executions, since
Raptor performs its analysis while also generating a trace
of events for the Datalog CP implementation. As a further
sanity check of Raptor, we have cross-referenced Raptor’s
reported HB races with RoadRunner’s FastTrack implemen-
tation’s results [25].

10.3 Coverage and Performance
This section considers two empirical questions. (1) How
many CP-races does Raptor find in real program executions
that HB detectors do not also find? (2) How many CP-races
does Raptor find that the Datalog CP implementation cannot
find due to its bounded analysis window?

Table 1 reports execution time and HB- and CP-race cov-
erage of Raptor, and compares with Datalog’s CP-race cov-

Raptor Datalog
Time Events HB-races CP-races CP-races

elevator 28 s 29,500 0 0 0
FTPServer 358 s 62,512 371 (28) 395 (22) 27 (6)
hedc 2.5 s 7,886 20 (4) 17 (1) 0
Jigsaw 1.0 h 246,418 5 (4) 0 0
philo 3.1 s 703 0 0 0
tsp 2.0 h 164,167 1 (1) 82 (2) 2 (1)
avrora 2.0 h 310,830 0 0 0
eclipse 2.0 h 320,510 2 (1) 0 0
jython 2.0 h 412,616 0 3 (1) 0
pmd 2.0 h 1,804,994 0 0 0
tomcat 65 s 86,936 0 0 0
xalan 2.0 h 2,638,597 17 (3) 30 (5) 11 (5)

Table 1. Dynamic execution characteristics and reported HB- and
CP-races reported for the evaluated programs. Events is the number
of events processed within the reported execution Time. For each
HB- and CP-race column, the first number is dynamic races, and
the second number (in parentheses) is statically unique races.

Distance range for each static CP-race
FTPServer 8–1,570; 203–1,472; 253–1,426; 293–1,836;

349–852; 459–2,308; 463–2,309; 495–1,586;
499–2,175; 525–2,415; 510–1,601; 607–1,959;
613–2,505; 760–1,931; 807–2,921; 968–968;
1,023–1,929; 1,397–1,462; 1,453–1,783;
1,736–1,736; 2,063–2,379; 2,079–2,079

hedc 2,067–3,774
tsp 177–14,303; 939–939
jython 157,736–157,739
xalan 4–16; 15–32; 15–48; 18–52; 134–149

Table 2. Event distances for detected CP-races. For each static CP-
race reported by Raptor, the table reports a range of event distances
for all dynamic occurrences of the static CP-race.

erage. Time includes the cost for Raptor to perform its anal-
ysis (which dominates execution time) and also generate a
trace of events for the Datalog CP implementation, but not
the cost of executing Datalog CP. We execute each program
until it either terminates normally or executes for two hours.
Events is the count of events (writes, reads, acquires, and re-
leases) processed by Raptor. Raptor reports significantly dif-
ferent event counts for some of the programs also evaluated
by Smaragdakis et al. [56]; this discrepancy makes sense be-
cause, at least in several cases, we are using different work-
loads than the prior work. The Datalog CP implementation
runs the execution traces generated by the same run of Rap-
tor that performs Raptor’s analysis.

The Raptor columns report the HB-races and CP-races
reported by Raptor. For each kind of data race, the first num-
ber is dynamic races detected, and the second number (in
parentheses) is distinct static races. A static race is an un-
ordered pair of static source locations (each source location
is a source method and bytecode index).

Every CP-race is also an HB-race. For each detected
CP-race, Raptor reports it as “HB” if it is also a HB-race,
and otherwise Raptor reports it as “CP.” Raptor’s CP-races
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column reports only races reported as “CP,” i.e., CP-races
that are not also HB-races. The races reported by the two
columns can have some overlap in static races, i.e., if the
same static race manifests once as an HB-race and again as
a (non-HB) CP-race within the same execution.

The Datalog column is dynamic and distinct static CP-
races reported by the Datalog CP implementation. Datalog
CP detects fewer CP-races than Raptor because of its analy-
sis window of 500 events. We have verified that (1) Raptor
detects all CP-races detected by Datalog CP, and (2) for all
CP-races reported by Raptor that involve accesses separated
by fewer than 500 events, Datalog also detects the CP-race.

Table 2 shows the “event distance” for the CP-races de-
tected by Raptor. The event distance of a CP-race is the dis-
tance (in events) between two accesses in the observed total
order of events. For each static race in the Raptor CP-races
column in Table 1, Table 2 reports the range of event dis-
tances for all dynamic instances of that static race. The ta-
ble shows that many detected dynamic CP-races have event
distances over 500 events; Raptor finds these dynamic CP-
races but Datalog CP does not. For some static CP-races,
every dynamic occurrence has an event distance exceeding
500 events, so Datalog CP does not detect the static CP-race
at all, corresponding to CP-races missed by Datalog CP in
Table 1. (A few CP-races have event distances of just less
than 500 events, but Datalog CP does not find them because
it would need to see events outside of the window in order to
determine that no CP ordering exists.)

In summary, Raptor handles execution traces of 100,000s–
1,000,000s of events within two hours, and it finds CP-races
that existing predictive analyses cannot find.

11. Related Work
To our knowledge, Raptor is the first online, sound (no
false races) predictive data race detection analysis. Other
predictive analyses are inherently offline and cannot handle
execution traces in full. Non-predictive dynamic and static
analyses are either unsound (reporting false races) or cannot
detect races that did not manifest in the current execution.

11.1 Predictive Analyses
Existing predictive analyses are inherently offline because
they need to be able to “look back” at the entire execu-
tion [16, 29, 30, 37, 51, 54, 56] (Section 3). Because they
inherently compute over an entire execution trace, these pre-
dictive analyses do not scale well to even modestly sized
traces; researchers have handled this issue by restricting
analysis to bounded windows of consecutive events, e.g.,
windows of 500 events [56] or 10,000 events [29]. In con-
trast Raptor is online because it summarize an execution’s
behavior so far in the form of analysis state.

Huang et al., Serbanuta et al., and Huang and Rajagopalan
increase data race coverage beyond CP by encoding control
flow constraints and using an SMT solver [29, 30, 54]. These
analyses are technically NP-complete, although in practice

they can be solved in polynomial time. In any case, just as
for the Datalog CP implementation [56], these analyses scale
only to bounded, small windows of events.

11.2 Non-predictive Analyses
Exposing data races. Prior approaches try to expose more
data races by exploring multiple thread interleaving sched-
ules, typically systematically or based on heuristics for ex-
posing new behaviors [12, 14, 24, 42, 53]. Somewhat simi-
larly, prior dynamic analyses perturb interleavings by paus-
ing threads, in an effort to expose data races [23, 32]. In con-
trast, Raptor detects data races that are possible in other ex-
ecutions from a single observed execution (i.e., from a sin-
gle schedule). Raptor and these approaches are potentially
complementary, since Raptor can detect more data races than
non-predictive analysis for a given execution.

Static analysis. Static data race detection analysis can
achieve completeness, detecting all true data races possi-
ble in all executions [22, 43, 44, 50, 60]. However, it is
inherently unsound (reports false data races).

Dynamic analysis. Dynamic analyses that are not predic-
tive inherently cannot detect data races in other executions
without risking reporting false data races. Happens-before
analyses [21, 25, 49] and other race detection approaches
that avoid false races [4, 19, 58] cannot predict data races in
other executions.

As Section 4 mentioned, Raptor’s HB analysis is closely
based on prior work’s Goldilocks analysis [21]. Raptor ex-
tends the Goldilocks HB analysis substantially in order to
track CP; in particular, Raptor’s CCP locksets add signifi-
cant complexity beyond Goldilocks.

Goldilocks and our Raptor analysis use per-variable
“locksets” to track the HB relation (and in Raptor’s case,
the CP relation) soundly and completely [21]. In contrast,
lockset analysis is a different kind of analysis that detects
violations of a locking discipline in which two conflicting
memory accesses always hold at least one lock in com-
mon [17, 18, 46, 47, 52, 59]. Lockset analysis is appeal-
ing because, like predictive data race detection, it can de-
tect data races that are ordered by HB in the current execu-
tion but manifest in some other execution. However, lock-
set analysis is inherently unsound (reports false positives)
since not all violations of a locking discipline are data races
(e.g., accesses ordered by fork, join, or notify–wait synchro-
nization). Prior work hybridizes happens-before and lockset
analyses for performance or accuracy reasons [47, 49, 61],
but it inherently cannot report data races that manifest only
in other executions without also risking false positives.

Prioritizing data races. Prior work seeks to expose erro-
neous behaviors due to data races, in order to prioritize races
that are demonstrably harmful [13, 15, 23, 26, 31, 45, 53].
However, as researchers have argued convincingly, all data
races are problematic because they lead to ill-defined seman-
tics [1, 7, 8, 10, 39, 55]. In any case, prioritizing data races
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is complementary to our work, which tries to detect as many
(true) data races as possible.

12. Conclusion
To our knowledge, Raptor is the first online, sound (no false
races) predictive analysis for detecting data races. Raptor
provably tracks the causally-precedes (CP) relation soundly
and completely. An evaluation of our implementation of
Raptor shows that it can analyze full program executions,
in contrast with existing predictive analyses that analyze
bounded execution windows. This advantage allows Raptor
to find CP-races that existing predictive analyses cannot find.
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A. Examples Executions Analyzed by Raptor

Example involving CP established before accesses execute.
In Figure 5, rel(m)1

CP−−→ acq(m)2 through the following
logic: rel(n)1

CP−−→ acq(n)2 by Rule (a), which implies
acq(m)1

CP−−→ rel(m)2 by Rule (c) (since acq(m)1
HB−−→

rel(n)1 and acq(n)2
HB−−→ rel(m)2), which implies rel(m)1

CP−−→
acq(m)2 by Rule (b). Thus wr(x)1

CP−−→ wr(x)2 by apply-
ing Rule (c) to rel(m)1

CP−−→ acq(m)2 (since wr(x)1
HB−−→

rel(m)1 and acq(m)2
HB−−→ wr(x)2).

Since the critical section on n2 finishes before wr(x)1

executes, Raptor must keep track of the ordering on critical
sections of n, m, and other locks—not just analysis state for
accesses such as x. After acq(q)2, T3 : q1 ∈ CCP(m1).
The CCP ordering composes with HB, so that T4 : n1 ∈
CCP(m1) before rel(n)2, and thus T4 ∈ CP(m1) after
rel(n)2. In a similar vein, Raptor adds T4 :m1 to CCP(x1)

at acq(m)2, which allows the analysis to add T4 to CP(x1)

at rel(m)2.

Example involving CP ordering established only after
CP-ordered variable accesses have executed. In Figure 6,
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T1 T2 T3 T4 Lockset after event
acq(m)1 HB(m1) = {T2}
acq(q)1 HB(q1) = {T2}
rel(q)1 HB(m1) = HB(q1) = {q1, T2}

acq(q)2 HB(m1) = HB(q1) = {q1, T2, T3}
CCP(m1) = CCP(q1) = {T3 :q1}
HB(q2) = {T3}

rel(q)2 HB(q2) = {q2, T3}
acq(n)1 HB(n1) = {T3}
wr(y)1 HB(y1) = {n1∗, T3}
rel(n)1 HB(q2) = {q2, n1, T3}, HB(n1) = {n1, T3}

HB(m1) = HB(q1) = {q1, n1, T2, T3}
acq(n)2 HB(y1) = {n1∗, T3, T4}

CCP(m1) = CCP(q1) = CCP(q2) = CCP(n1) = CCP(y1) = {T4 :n1}
HB(q2) = {q2, n1, T3, T4}, HB(n1) = {n1, T3, T4}
HB(m1) = HB(q1) = {q1, n1, T2, T3, T4}, HB(n2) = {T4}

wr(y)2 CP(n1) = {T4}, CCP(y1) = {T4 :n1, ξ :n1}
HB(y1) = {n1∗, T3, T4, ξ}
HB(y2) = {n2∗, T4}

rel(n)2 HB(n2) = {n2, T4}, CP(y1) = {n, T4, ξ}
CP(m1) = CP(q1) = CP(q2) = CP(n1) = {n, T4}

wr(x)1 HB(x1) = {T1}
acq(p)1 HB(p1) = {T1}
rel(p)1 HB(p1) = {p1, T1}, HB(x1) = {p1, T1}

acq(p)2 HB(p1) = HB(x1) = {p1, T1, T2}
CCP(p1) = CCP(x1) = {T2 :p1}
HB(p2) = {T2}

rel(p)2 HB(m1) = HB(q1) = {q1, p2, T2, T3}
HB(p2) = {p2, T2}

rel(m)1 HB(p1) = {p1, m1, T1, T2}
HB(m1) = HB(q1) = {q1, p2, m1, T2, T3}
HB(p2) = {p2, m1, T2}, HB(x1) = {p1, m1, T1, T2}

acq(m)2 HB(p1) = HB(x1) = {p1, m1, T1, T2, T4}
HB(p2) = {p2, m1, T2, T4}, HB(m2) = {T4}
CCP(p1) = CCP(p2) = CCP(x1) = {T4 :m1}
CCP(m1) = CCP(q1) = {T4 :m1}

rel(m)2 HB(m2) = {m2, T4}, HB(n2) = {n2, m2, T4}
CP(p1) = CP(p2) = CP(x1) = {m, T4}
CP(m1) = CP(q1) = CP(q2) = CP(n1) = {n, m, T4}
CP(y1) = {n, m, T4, ξ}, HB(y1) = {n1∗, m2, T3, T4, ξ}
HB(y2) = {n2∗, m2, T4}, HB(n1) = {n1, m2, T3, T4}

wr(x)2 HB(x2) = {T4}
CP(x1) = {m, T4, ξ}, HB(x1) = {p1, m1, T1, T2, T3, ξ }

Figure 5. Example execution and Raptor’s analysis state. wr(x)1 CP−−→ wr(x)2 because rel(n)1 CP−−→ acq(n)2, yet wr(x)1 executes only after
rel(n)1

CP−−→ acq(n)2 has been established and after rel(n)2 has executed.

wr(z)1
CP−−→ wr(z)2 because rel(m)1

CP−−→ acq(m)2 (via
Rule (c)), which is true because acq(m)1

CP−−→ rel(m)2 (via
Rule (b)), which is true by Rule (c) because rel(n)1

CP−−→
acq(n)2 by Rule (a). However, these CP orderings have not
yet been (and cannot be) determined at wr(z)2.

Raptor handles this situation as follows. At wr(z)2, Rap-
tor adds ξ : m1 to CCP(z1), which captures the fact that
wr(z)1

CP−−→ wr(z)2 if acq(m)1
CP−−→ rel(m)2. When the

execution finally executes rel(m)2, Raptor concludes from
ξ :m1 ∈ CCP(z1) and T3 ∈ CP(m1) that it should add ξ to
CP(z1).

Example that is subtlely different from the prior example.
Figure 7 differs from Figure 6 by changing the order in
which T1 executes its critical sections on m and q. This

subtle change means that rel(m)1 6CP−−→ acq(m)2 and thus
wr(z)1 6CP−−→ wr(z)2.

In Figure 7, after rel(q)1, m1 ∈ HB(q1), instead of q1 ∈
HB(m1) as in Figure 6. As a result, T3 : n1 /∈ CCP(m1)

after acq(n)2. That is, Raptor correctly captures the fact that
acq(n)1

CP−−→ rel(n)2 does not imply acq(m)1
CP−−→ rel(m)2

(if true).

Example involving a chain of CCP dependencies. In Fig-
ure 8, wr(x)1

CP−−→ wr(x)2 through the following logic:
rel(q)1

CP−−→ acq(q)2 by Rule (a), which implies acq(o)1 CP−−→
rel(o)2 by Rule (c), which implies rel(o)1 CP−−→ acq(o)2 by
Rule (b), which implies acq(m)1

CP−−→ rel(m)2 by Rule (c),
which implies rel(m)1

CP−−→ acq(m)2 by Rule (b), which
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T1 T2 T3 T4 Lockset After
wr(z)1 HB(z1) = {T1}
acq(m)1 HB(m1) = {T1}
rel(m)1 HB(z1) = HB(m1) = {m1, T1}
acq(q)1 HB(q1) = {T1}
rel(q)1 HB(q1) = {q1, T1}

HB(z1) = HB(m1) = {m1, q1, T1}
acq(q)2 HB(z1) = HB(m1) = {m1, q1, T1, T2}

HB(q1) = {q1, T1, T2}, HB(q2) = {T2}
CCP(z1) = CCP(m1) = CCP(q1) = {T2 :q1}

rel(q)2 HB(q2) = {q2, T2}
acq(n)1 HB(n1) = {T2}
wr(y)1 HB(y1) = {n1∗, T2}
rel(n)1 HB(q1) = {q1, n1, T1, T2}, HB(n1) = {n1, T2}

HB(z1) = HB(m1) = {m1, q1, n1, T1, T2}
HB(q2) = {q2, n1, T2}

acq(m)2 HB(z1) = HB(m1) = {m1, q1, n1, T1, T2, T3}
CCP(z1) = CCP(m1) = {T3 :m1}, HB(m2) = {T3}

acq(o)1 HB(o1) = {T3}
rel(o)1 HB(o1) = HB(m2) = {o1, T3}

HB(z1) = HB(m1) = {m1, q1, n1, o1, T1, T2, T3}
CCP(z1) = CCP(m1) = {o :m1, T3 :m1}

acq(o)2 HB(z1) = HB(m1) = {m1, q1, n1, o1, T1, T2, T3, T4}
CCP(z1) = CCP(m1) = {o :m1, T4 :m1, T3 :m1, T4 :o1}
HB(o1) = HB(m2) = {o1, T3, T4}
CCP(o1) = CCP(m1) = {T4 :o1}
HB(o2) = {T4}

rel(o)2 CCP(z1) = CCP(m1) = {o :m1, T4 :m1, T3 :m1}
HB(o2) = {o2, T4}

wr(z)2 CCP(z1) = {o :m1, T4 :m1, T3 :m1, ξ :m1}
HB(z1) = {m1, q1, n1, o1, T1, T2, T3, T4, ξ}
HB(z2) = {T4}

acq(n)2 CCP(z1) = {o :m1, T4 :m1, T3 :m1, ξ :m1, T3 :n1}
CCP(m1) = {o :m1, T4 :m1, T3 :m1, T3 :n1}
CCP(y1) = CCP(n1) = CCP(q1) = CCP(q2) = {T3 :n1}
HB(q1) = {q1, n1, T1, T2, T3}, HB(q2) = {q2, n1, T2, T3}
HB(n1) = {n1, T2, T3}, HB(n2) = {T3}
HB(y1) = {n1∗, T2, T3}

wr(y)2 CP(n1) = {T3}, CCP(y1) = {T3 :n1, ξ3 :n1}
HB(y1) = {n1∗, T2, T3, ξ}
HB(y2) = {m2

∗, n
2
∗, T3}

rel(n)2 CCP(m1) = {o :m1, T4 :m1, T3 :m1}
CCP(z1) = {o :m1, T4 :m1, T3 :m1, ξ :m1}
HB(o1) = HB(m2) = {o1, n2, T3, T4}, HB(n2) = {n2, T3}
CP(z1) = CP(m1) = CP(n1) = CP(q1) = CP(q2) = {n, T3}
CP(y1) = {n, T3, ξ}

rel(m)2 CP(n1) = CP(q1) = CP(q2) = {n, m, T3}
CP(m1) = {n, o, m, T3, T4}
CP(z1) = {n, o, m, T3, T4, ξ}
CP(y1) = {n, m, T3, ξ}
HB(o1) = HB(m2) = {o1, n2, m2, T3, T4}
HB(n2) = {n2, m2, T3}, HB(q1) = {q1, n1, m2, T1, T2, T3}
HB(q2) = {q2, n1, m2, T2, T3}, HB(n1) = {n1, m2, T2, T3}
HB(y1) = {n1∗, m2, T2, T3, ξ}

Figure 6. In this execution, wr(z)1 CP−−→ wr(z)2 because of a CP ordering that has not yet been established when wr(z)2 executes.
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T1 T2 T3 T4 Lockset After
wr(z)1 HB(z1) = {T1}
acq(q)1 HB(q1) = {T1}
rel(q)1 HB(z1) = HB(q1) = {q1, T1}
acq(m)1 HB(m1) = {T1}
rel(m)1 HB(m1) = {m1, T1}

HB(z1) = HB(q1) = {q1, m1, T1}
acq(q)2 HB(z1) = HB(q1) = {q1, m1, T1, T2}

CCP(z1) = CCP(q1) = {T2 :q1}, HB(q2) = {T2}
rel(q)2 HB(q2) = {q2, T2}
acq(n)1 HB(n1) = {T2}
wr(y)1 HB(y1) = {n1∗, T2}
rel(n)1 HB(n1) = {n1, T2}, HB(q2) = {q2, n1, T2}

HB(z1) = HB(q1) = {q1, m1, n1, T1, T2}
acq(m)2 HB(z1) = HB(q1) = {q1, m1, n1, T1, T2, T3}

HB(m1) = {m1, T1, T3}, HB(m2) = {T3}
CCP(z1) = CCP(q1) = CCP(m1) = {T3 :m1}

acq(o)1 HB(o1) = {T3}
rel(o)1 HB(m1) = {m1, o1, T1, T3}

HB(o1) = HB(m2) = {o1, T3}, HB(z1) = HB(q1) = {q1, m1, n1, o1, T1, T2, T3}
CCP(z1) = CCP(q1) = CCP(m1) = {o :m1, T3 :m1}

acq(o)2 HB(z1) = HB(q1) = {q1, m1, n1, o1, T1, T2, T3, T4}
HB(m1) = {m1, o1, T1, T3, T4}
CCP(z1) = CCP(q1) = CCP(m1) = {o :m1, T3 :m1, T4 :m1, T4 :o1}
CCP(o1) = CCP(m2) = {T4 :o1}
HB(o1) = HB(m2) = {o1, T3, T4}, HB(o2) = {T4}

rel(o)2 CCP(z1) = CCP(q1) = CCP(m1) = {o :m1, T3 :m1, T4 :m1}
HB(o2) = {o2, T4}

wr(z)2 CCP(z1) = {o :m1, T3 :m1, T4 :m1, ξ :m1}
HB(z1) = {q1, m1, n1, o1, T1, T2, T3, T4, ξ}
HB(z2) = {T4}

acq(n)2 HB(y1) = {n1∗, T2, T3}, HB(n2) = {T3}
HB(n1) = {n1, T2, T3}, HB(q2) = {q2, n1, T2, T3}
CCP(q2) = CCP(y1) = CCP(n1) = {T3 :n1}
CCP(z1) = {o :m1, T3 :m1, T4 :m1, ξ :m1, T3 :n1}
CCP(q1) = {o :m1, T3 :m1, T4 :m1, T3 :n1}

wr(y)2 CP(n1) = {T3}, CCP(y1) = {T3 :n1, ξ :n1}
HB(y1) = {n1∗, T2, T3, ξ}
HB(y2) = {m2

∗, n
2
∗, T3}

rel(n)2 CCP(q1) = {o :m1, T3 :m1, T4 :m1}
CCP(z1) = {o :m1, T3 :m1, T4 :m1, ξ :m1}
CCP(m1) = {o :m1, n :m1, T3 :m1, T4 :m1}
HB(m1) = {m1, o1, n2, T1, T3, T4}
HB(o1) = HB(m2) = {o1, n2, T3, T4}, HB(n2) = {n2, T3}
CP(z1) = CP(q1) = CP(q2) = CP(n1) = {n, T3}
CP(y1) = {n, T3, ξ}

rel(m)2 HB(n2) = {n2, m2, T3}
HB(o1) = HB(m2) = {o1, n2, m2, T3, T4}
CP(z1) = CP(q1) = CP(q2) = CP(n1) = {n, m, T3}
CP(y1) = {n, m, T3, ξ}
HB(q2) = {q2, m2, n1, T2, T3}, HB(n1) = {n1, m2, T2, T3}
HB(y1) = {n1∗, m2, T2, T3, ξ}

Figure 7. This example is subtlely different from the example in Figure 6: it flips the order of T1’s critical sections on m and q. As a result,
acq(m)1 6CP−−→ rel(m)2.
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implies wr(x)1 CP−−→ wr(x)2 by Rule (c). The example shows
that even when the critical section on m2 ends, i.e., after
rel(m)2 executes, it is not yet possible to determine that
acq(m)1

CP−−→ rel(m)2. This fact is not knowable until after
acq(q)2 executes. In particular, at rel(m)2, acq(m)1

CP−−→
rel(m)2 is dependent on whether rel(o)1

CP−−→ acq(o)2, as
represented by T3 :o1 ∈ CCP(m1) after rel(m)2.

B. Proof Details
This section proves the theorems from Section 7.

Theorem 1. After every event, Raptor (i.e., the analysis in
Algorithms 1–5) maintains the invariants in Figure 3.

To prove this theorem, we use the following lemmas:

Lemma 1. Let e be any write event, i.e., e = wr(x)i by
thread T. Let e+ be the event immediately after e in the
observed total order (≺trace ). If Figure 3’s invariants hold
for e before Raptor’s write algorithm (Algorithm 2) executes,
then they hold for e+ after the write algorithm executes.

Lemma 2. Let e be any acquire event, i.e., e = acq(m)i

by thread T. Let e+ be the event immediately after e in
the observed total order (≺trace ). If Figure 3’s invariants
hold for e before Raptor’s acquire algorithm (Algorithm 3)
executes, then they hold for e+ after the acquire algorithm
executes.

Lemma 3. Let e be any release event, i.e., e = rel(m)i by
thread T. If Figure 3’s invariants hold for e before Raptor’s
pre-release algorithm (Algorithm 4) executes, then they hold
for e after the pre-release algorithm executes.

Lemma 4. Let e be any release event, i.e., e = rel(m)i

by thread T. Let e+ be the event immediately after e in
the observed total order (≺trace ). If Figure 3’s invariants
hold for e before Raptor’s release algorithm (Algorithm 5)
executes, then they hold for e+ after the release algorithm
executes.

We introduce four lemmas, instead of one combined lemma,
in order to divide the proof steps into four separate proofs.

We prove these lemmas for the CP invariant only. For the
other invariants, it is comparatively straightforward to see
that they hold:

• The PO, HB, HB-index, and HB-critical-section invari-
ants hold for a modest extension of the Goldilocks al-
gorithm [21]. The Goldilocks authors have proved that
the Goldilocks algorithm soundly and precisely computes
HB [20].
• The analysis maintains the CP-rule-A invariant by updat-

ing CP lockset(s) as soon as a conflicting write executes
(lines 2–7 of Algorithm 2).
• The CCP-constraint invariant holds because CCP ele-

ments of the form σ : mj only exist during critical sec-
tions on m:

1. At rel(m)i, Algorithm 5 removes all elements σ :mj

from every CCP(ρ)+.

2. When @σ′ | σ′ : mj ∈ CCP(ρ), only Algorithm 3
(for acq(m)i) adds elements of the form σ : mj to
CCP(ρ)+.

Proof of Lemma 1.
Let e = wr(x)i by thread T. Let e+ be the event imme-

diately after e in the observed total order (≺trace ). Let ρ be
any lockset owner. Let eρ be the event corresponding to ρ,
i.e., eρ = wr(x)h if ρ = xh, or eρ = acq(m)h if ρ = mh.

We define the following abbreviations for the left- and
right-hand sides of the CP invariant:

Let LHS = CP(ρ)∪
{
σ |

(
∃nk | σ :nk ∈ CCP(ρ)∧∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

) }
.

Let LHS+ = CP(ρ)+ ∪
{
σ |

(
∃nk | σ : nk ∈

CCP(ρ)+ ∧ ∃j | rel(n)k CP−−→ acq(n)j ≺trace e
+
) }

.

Let RHS =
{
σ |

(
∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace

e
) }

Let RHS+ =
{
σ |

(
∃e′ | appl(σ, e′)∧eρ

CP−−→ e′ ≺trace

e+
) }

.
Suppose Figure 3’s invariants hold before e, i.e., suppose

LHS = RHS . We call this assumption the “inductive hy-
pothesis” because we use this lemma’s result in the proof of
Theorem 1, which is by induction.

To show LHS+ = RHS+, we first show LHS+ ⊆
RHS+ (subset direction) and then LHS+ ⊇ RHS+ (su-
perset direction).

Subset direction: Let σ ∈ LHS+.
Either σ ∈ CP(ρ)+ or ∃nk | σ : nk ∈ CCP(ρ)+ ∧ ∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

+ (or both):

Case 1: σ ∈ CP(ρ)+

If σ ∈ CP(ρ), then by the inductive hypothesis,
σ ∈ RHS , i.e., ∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e.
Since e ≺trace e+, ∃e′ | eρ

CP−−→ e′ ≺trace e+, so
σ ∈ RHS+.

Otherwise (σ /∈ CP(ρ)), Algorithm 2 must add σ to
CP(ρ)+, which can happen only at line 5 or 16:

• Line 5 executes within line 2’s for loop, so let m ∈
heldBy(T). Since line 5 executes, line 3 evaluates to
true, so (1) T /∈ PO(xi−1), and (2) let j be such
that mj

∗ ∈ HB(xi−1). Line 5 adds T to CP(mj)+,
so ρ = mj and σ = T.

By the inductive hypothesis on mj
∗ ∈ HB(xi−1)

(HB-critical-section invariant), acq(m)j
PO−−→ wr(x)i−1 PO−−→

rel(m)j∧wr(x)i−1 ≺trace e. Because m ∈ heldBy(T)

and T /∈ PO(xi−1), let k > j be such that acq(m)k
PO−−→

e
PO−−→ rel(m)k. By the definition of CP (Rule (a)),

rel(m)j
CP−−→ acq(m)k. By the definition of CP
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T1 T2 T3 T4 Lockset After
wr(x)1 HB(x1) = {T1}
acq(m)1 HB(m1) = {T1}
rel(m)1 HB(x1) = HB(m1) = {m1, T1}
acq(o)1 HB(o1) = {T1}
rel(o)1 HB(o1) = {o1, T1}

HB(x1) = HB(m1) = {m1, o1, T1}
acq(q)1 HB(q1) = {T1}
wr(y)1 HB(y1) = {q1∗, T1}
rel(q)1 HB(o1) = {o1, q1, T1}, HB(q1) = {q1, T1}

HB(x1) = HB(m1) = {m1, o1, q1, T1}
acq(o)2 HB(x1) = HB(m1) = {m1, o1, q1, T1, T2}

CCP(x1) = CCP(m1) = CCP(o1) = {T2 :o1}
HB(o1) = {o1, q1, T1, T2}, HB(o2) = {T2}

acq(m)2 HB(x1) = HB(m1) = {m1, o1, q1, T1, T2, T3}
CCP(x1) = CCP(m1) = {T2 :o1, T3 :m1}
HB(m2) = {T3}

acq(p)1 HB(p1) = {T3}
rel(p)1 HB(x1) = HB(m1) = {m1, o1, q1, p1, T1, T2, T3}

HB(p1) = HB(m2) = {p1, T3}
CCP(x1) = CCP(m1) = {T2 :o1, p :m1, T3 :m1}

acq(r)1 HB(r1) = {T2}
rel(r)1 HB(r1) = HB(o2) = {r1, T2}, HB(o1) = {o1, q1, r1, T1, T2}

HB(x1) = HB(m1) = {m1, o1, q1, p1, r1, T1, T2, T3}
CCP(x1) = CCP(m1) = {r :o1, T2 :o1, p :m1, T3 :m1}
CCP(o1) = {r :o1, T2 :o1}

acq(r)2 CCP(x1) = CCP(m1) = {r :o1, T3 :o1, T2 :o1, p :m1, T3 :m1, T3 : r1}
CCP(r1) = CCP(o2) = {T3 : r1}, CCP(o1) = {r :o1, T3 :o1, T2 :o1, T3 : r1}
HB(r1) = HB(o2) = {r1, T2, T3}
HB(o1) = {o1, q1, r1, T1, T2, T3}, HB(r2) = {T3}

rel(r)2 CCP(o1) = {r :o1, T3 :o1, T2 :o1, T3 : r1}
CCP(x1) = CCP(m1) = {r :o1, T3 :o1, T2 :o1, r :m1, p :m1, T3 :m1}
HB(r2) = {r2, T3}, HB(p1) = HB(m2) = {p1, r2, T3}

rel(m)2 HB(r1) = HB(o2) = {r1, m2, T2, T3}, HB(r2) = {r2, m2, T3}
HB(o1) = {o1, q1, r1, m2, T1, T2, T3}, HB(p1) = HB(m2) = {p1, r2, m2, T3}
CCP(o1) = {r :o1, m :o1, T3 :o1, T2 :o1}
CCP(x1) = CCP(m1) = {r :o1, m :o1, p :o1, T3 :o1, T2 :o1}

acq(p)2 HB(x1) = HB(m1) = {m1, o1, q1, p1, r1, T1, T2, T3, T4}
CCP(x1) = CCP(m1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1, T4 :p1}
HB(p1) = HB(m2) = {p1, r2, m2, T3, T4}
CCP(p1) = CCP(m2) = {T4 :p1}, HB(p2) = {T4}

rel(p)2 HB(p2) = {p2, T4}
CCP(x1) = CCP(m1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1}

wr(x)2 CCP(x1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1, ξ :o1}
HB(x1) = {m1, o1, q1, p1, r1, T1, T2, T3, T4, ξ}
HB(x2) = {T4}

acq(q)2 CCP(x1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1, ξ :o1, T2 :q1}
CCP(y1) = CCP(q1) = {T2 :q1}, CCP(o1) = {r :o1, m :o1, T3 :o1, T2 :o1, T2 :q1}
CCP(m1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1, T2 :q1}
HB(y1) = {q1∗, T1, T2}, HB(q1) = {q1, T1, T2}, HB(q2) = {T2}

wr(y)2 CP(q1) = {T2}, CCP(y1) = {T2 :q1, ξ :q1}
HB(y1) = {q1∗, T1, T2, ξ}, HB(y2) = {o2∗, q2∗, T2}

rel(q)2 CCP(o1) = {r :o1, m :o1, T3 :o1, T2 :o1}
CCP(m1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1}
CCP(x1) = {r :o1, m :o1, p :o1, T3 :o1, T4 :o1, T2 :o1, ξ :o1}
HB(q2) = {q2, T2}, HB(r1) = HB(o2) = {r1, m2, q2, T2, T3}
CP(x1) = CP(m1) = CP(q1) = CP(o1) = {q, T2}, CP(y1) = {q, T2, ξ}

rel(o)2 HB(q2) = {q2, o2, T2}, HB(r1) = HB(o2) = {r1, m2, q2, o2, T2, T3}
CP(o1) = {q, r, m, o, T2, T3}, CP(q1) = {q, o, T2}, CP(y1) = {q, o, T2, ξ}
CP(m1) = {q, r, m, p, o, T2, T3, T4}, CP(x1) = {q, r, m, p, o, T2, T3, T4, ξ}
HB(q1) = {q1, o2, T1, T2}, HB(y1) = {q1∗, o2, T1, T2, ξ}

Figure 8. wr(x)1
CP−−→ wr(x)2 due to CCP dependencies that Raptor necessarily resolves lazily.
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(Rule (c)), acq(m)j
CP−−→ e. Since thr(e) = T ∧

acq(m)j
CP−−→ e ≺trace e

+, therefore T ∈ RHS+.
• Line 16 adds ξ to CP(ρ)+, ρ = xi−1, eρ = wr(x)i−1

and σ = ξ. Since line 16 executes, line 15 evalu-
ates to true, so T ∈ CP(ρ). By the inductive hy-
pothesis (CP invariant), let e′ be such that thr(e′) =

T ∧ wr(x)i−1 CP−−→ e′ ≺trace e. By the definition
of CP (Rule (c)), since thr(e′) = T = thr(e),
wr(x)i−1 CP−−→ e ≺trace e+. Note that e = wr(x)i

is e∗ from Figure 3. Therefore ξ ∈ RHS+.

Case 2: Let nk and j be such that σ : nk ∈ CCP(ρ)+ ∧
rel(n)k

CP−−→ acq(n)j ≺trace e
+.

If σ :nk ∈ CCP(ρ) ∧ rel(n)k
CP−−→ acq(n)j ≺trace e,

then by the inductive hypothesis (CP invariant), σ ∈
RHS , i.e., ∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e. Since
e ≺trace e

+, eρ
CP−−→ e′ ≺trace e

+, and thus σ ∈ RHS+.
Otherwise, ¬

(
σ : nk ∈ CCP(ρ) ∧ rel(n)k

CP−−→
acq(n)j ≺trace e

)
. However, rel(n)k CP−−→ acq(n)j ≺trace

e because rel(n)k
CP−−→ acq(n)j ≺trace e+ and e 6=

acq(n)j . Therefore, σ :nk /∈ CCP(ρ), which means that
Algorithm 2 must add σ : nk to CCP(ρ)+. This addi-
tion can happen only at line 19, which adds ξ : nk to
CCP(ρ)+, so ρ = xi−1, eρ = wr(x)i−1, and σ = ξ. Be-
cause line 19 executes, T : nk ∈ CCP(xi−1) according
to line 18. Since rel(n)k

CP−−→ acq(n)j ≺trace e ∧ T :
nk ∈ CCP(xi−1), by the inductive hypothesis (CP in-
variant), let e′ be such that thr(e′) = T ∧ wr(x)i−1 CP−−→
e′ ≺trace e. By the definitions of HB and CP, since
thr(e′) = T = thr(e), wr(x)i−1 CP−−→ e ≺trace e+.
Note that e = wr(x)i is e∗ from Figure 3. Therefore
ξ ∈ RHS+.

Superset direction: Let σ ∈ RHS+.
If σ ∈ RHS , then by the inductive hypothesis, σ ∈

LHS . Since Algorithm 2 maintains CP(ρ)+ ⊇ CP(ρ) and
CCP(ρ)+ ⊇ CCP(ρ), σ ∈ LHS+.

Otherwise (σ ∈ RHS+ but σ /∈ RHS ), ∃e′ | appl(σ, e′)∧
eρ

CP−−→ e′ ≺trace e+ but @e′ | appl(σ, e′) ∧ eρ
CP−−→

e′ ≺trace e, which implies appl(σ, e) ∧ eρ
CP−−→ e. By

the definition of CP, since e = wr(x)i is not an acquire
operation, ∃e′ | thr(e′) = T ∧ eρ

CP−−→ e′ ≺trace e, i.e.,
T ∈ RHS . According to the definition of appl(σ, e), ei-
ther (1) σ = T or (2) σ = ξ (note that e = wr(x)i is e∗

from Figure 3). However, σ /∈ RHS , so σ = ξ. There-
fore ρ = xi−1 and eρ = wr(x)i−1, and wr(x)i−1 CP−−→ e.
By the inductive hypothesis on T ∈ RHS (CP invariant),
T ∈ CP(xi−1) or ∃nk | T : nk ∈ CCP(xi−1) ∧ ∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e (or both).

Case 1: T ∈ CP(xi−1)

Then line 15 in Algorithm 2 evaluates to true, and
line 16 adds ξ to CP(xi−1)+. Thus ξ ∈ LHS+.
Case 2: Let nk be such that T : nk ∈ CCP(xi−1) ∧ ∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e.
Since T : nk ∈ CCP(xi−1) matches line 18, line 19

adds ξ : nj to CCP(xi−1)+. Since e ≺trace e+, ∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e
+. Thus ξ ∈ LHS+.

Since LHS+ ⊆ RHS+ ∧ LHS+ ⊇ RHS+, LHS+ =
RHS+.

Proof of Lemma 2.
Let e = acq(m)i by thread T. Let e+ be the event

immediately after e in the observed total order (≺trace ). Let
ρ be any lockset owner. Let eρ be the event corresponding to
ρ, i.e., eρ = wr(x)h if ρ = xh, or eρ = acq(m)h if ρ = mh.

We define the following abbreviations for the left- and
right-hand sides of the CP invariant:

Let LHS = CP(ρ)∪
{
σ |

(
∃nk | σ :nk ∈ CCP(ρ)∧∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

) }
.

Let LHS+ = CP(ρ)+ ∪
{
σ |

(
∃nk | σ : nk ∈

CCP(ρ)+ ∧ ∃j | rel(n)k CP−−→ acq(n)j ≺trace e
+
) }

.

Let RHS =
{
σ |

(
∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace

e
) }

Let RHS+ =
{
σ |

(
∃e′ | appl(σ, e′)∧eρ

CP−−→ e′ ≺trace

e+
) }

.
Suppose Figure 3’s invariants hold before e, i.e., suppose

LHS = RHS . We call this assumption the “inductive hy-
pothesis” because we use this lemma’s result in the proof of
Theorem 1, which is by induction.

To show LHS+ = RHS+, we first show LHS+ ⊆
RHS+ (subset direction) and then LHS+ ⊇ RHS+ (su-
perset direction).

Subset direction: Let σ ∈ LHS+.
Either σ ∈ CP(ρ)+ or ∃nk | σ : nk ∈ CCP(ρ)+ ∧ ∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

+ (or both):

Case 1: σ ∈ CP(ρ)+

If σ ∈ CP(ρ), then by the inductive hypothesis,
σ ∈ RHS , i.e., ∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e.
Since e ≺trace e

+ then ∃e′ | eρ
CP−−→ e′ ≺trace e

+, so
σ ∈ RHS+.

Otherwise (σ /∈ CP(ρ)), Algorithm 3 must add σ to
CP(ρ)+, which can happen only at line 4. Line 4 adds T
to CP(ρ)+, so σ = T. Since line 4 executes, line 3 must
evaluate to true for ρ, so m ∈ CP(ρ). By the inductive
hypothesis (CP invariant), ∃j | eρ

CP−−→ rel(m)j ≺trace e.
By the definition of CP, eρ

CP−−→ e (since e = acq(m)i).
Because thr(e) = T ∧ eρ

CP−−→ e ≺trace e+, therefore
T ∈ RHS+.
Case 2: Let nk and j be such that σ : nk ∈ CCP(ρ)+ ∧
rel(n)k

CP−−→ acq(n)j ≺trace e
+.
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If σ :nk ∈ CCP(ρ) ∧ rel(n)k
CP−−→ acq(n)j ≺trace e,

then by the inductive hypothesis, σ ∈ RHS , i.e., ∃e′ |
appl(σ, e′)∧eρ

CP−−→ e′ ≺trace e. Since e ≺trace e
+ then

eρ
CP−−→ e′ ≺trace e

+, so σ ∈ RHS+.
Otherwise, ¬

(
σ : nk ∈ CCP(ρ) ∧ rel(n)k

CP−−→
acq(n)j ≺trace e

)
. In fact, we can conclude that σ :nk /∈

CCP(ρ) using the following reasoning. If¬
(
rel(n)k

CP−−→
acq(n)j ≺trace e

)
, then acq(n)j 6≺trace e (since rel(n)k CP−−→

acq(n)j), and thus e = acq(n)j (since acq(n)j ≺trace e
+

and e immediately precedes e+), which by the induc-
tive hypothesis (CCP-constraint invariant) gives σ : nk /∈
CCP(ρ). Since σ : nk /∈ CCP(ρ) regardless, Algo-
rithm 3 must add σ : nk to CCP(ρ)+, which can happen
only at line 7 or 13 (or both).

• If line 7 adds σ :nk to CCP(ρ)+, then σ = T and m :
nk ∈ CCP(ρ) (line 6). By the inductive hypothesis
(CP invariant), ∃l | eρ

CP−−→ rel(m)l ≺trace e. By
the definition of CP, eρ

CP−−→ e since e = acq(m)i.
Since thr(e) = T ∧ eρ

CP−−→ e ≺trace e
+, therefore

T ∈ RHS+.
• If line 13 adds σ :nk to CCP(ρ)+, then nk ∈ HB(ρ)

or nk∗ ∈ HB(ρ) according to line 10. Furthermore,
n = m and σ = T. By the inductive hypothe-
sis (HB, HB-index, and HB-critical-section invari-
ants), eρ

HB−−→ rel(n)k ≺trace e. Since we know
rel(n)k

CP−−→ acq(n)j ≺trace e
+ (from the beginning

of Case 2) and e = acq(n)i (since n = m), there-
fore eρ

CP−−→ e by the definition of CP (regardless of
whether j = i or j < i). Since thr(e) = T ∧ eρ

CP−−→
e ≺trace e

+, therefore T ∈ RHS+.

Superset direction: Let σ ∈ RHS+.
If σ ∈ RHS , then by the inductive hypothesis, σ ∈

LHS . Since Algorithm 3 maintains CP(ρ)+ ⊇ CP(ρ) and
CCP(ρ)+ ⊇ CCP(ρ), σ ∈ LHS+.

Otherwise (σ ∈ RHS+ but σ /∈ RHS ), ∃e′ | appl(σ, e′)∧
eρ

CP−−→ e′ ≺trace e+ but @e′ | appl(σ, e′) ∧ eρ
CP−−→

e′ ≺trace e, which implies appl(σ, e) ∧ eρ
CP−−→ e and

thus σ = T. Since eρ
CP−−→ e and @e′ | thr(e′) =

T ∧ eρ
CP−−→ e′ ≺trace e, by the definition of CP, ∃l |

eρ
CP−−→ rel(m)l

HB−−→ e or ∃l | eρ
HB−−→ rel(m)l

CP−−→ e (or
both).

Case 1: ∃l | eρ
CP−−→ rel(m)l

HB−−→ e

By the inductive hypothesis on eρ
CP−−→ rel(m)l (CP

invariant), m ∈ CP(ρ) or ∃nk | m :nk ∈ CCP(ρ) ∧ ∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e (or both).

Case 1a: m ∈ CP(ρ)

Then line 3 of Algorithm 3 evaluates to true for ρ,
so line 4 executes and thus T ∈ CP(ρ)+. Therefore
T ∈ LHS+.
Case 1b: Let nk be such that m :nk ∈ CCP(ρ)∧∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e.
Then according to line 6, line 7 executes and

adds T : nk to CCP(ρ)+. Since e ≺trace e+,
∃j | rel(n)k

CP−−→ acq(n)j ≺trace e+. Therefore
T ∈ LHS+.

Case 2: ∃l | eρ
HB−−→ rel(m)l

CP−−→ e

Let j be the minimum value such that eρ
HB−−→

rel(m)j . By the inductive hypothesis (HB, HB-index,
and HB-critical-section invariants), mj ∈ HB(ρ) or
mj
∗ ∈ HB(ρ). Thus line 10 evaluates to true for ρ, so

line 13 executes and T :mj ∈ CCP(ρ)+. Furthermore,
rel(m)j

CP−−→ acq(m)i ≺trace e
+ (e = acq(m)i). There-

fore T ∈ LHS+.

Since LHS+ ⊆ RHS+ ∧ LHS+ ⊇ RHS+, LHS+ =
RHS+.

Proof of Lemma 3.
Let e = rel(m)i by thread T. Let ρ be any lockset owner.

Let eρ be the event corresponding to ρ, i.e., eρ = wr(x)h if
ρ = xh, or eρ = acq(m)h if ρ = mh.

We define the following abbreviations for the left- and
right-hand sides of the CP invariant:

Let LHS = CP(ρ)∪
{
σ |

(
∃nk | σ :nk ∈ CCP(ρ)∧∃l |

rel(n)k
CP−−→ acq(n)l ≺trace e

) }
.

Let LHS+ = CP(ρ)+ ∪
{
σ |

(
∃nk | σ : nk ∈

CCP(ρ)+ ∧ ∃l | rel(n)k CP−−→ acq(n)l ≺trace e
) }

.

Let RHS =
{
σ |

(
∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace

e
) }

.
Let RHS+ = RHS .
Unlike for the other algorithms, the pre-release algorithm

aims to maintain the invariants for the program point before
e, so we define LHS+ and RHS+ with respect to e (not
some event e+).

Suppose Figure 3’s invariants hold, i.e., LHS = RHS ,
before the pre-release algorithm executes. We call this as-
sumption the “inductive hypothesis” because we use this
lemma’s result in the proof of Theorem 1, which is by in-
duction.

To show LHS+ = RHS+, we first show LHS+ ⊆
RHS+ (subset direction) and then LHS+ ⊇ RHS+ (su-
perset direction).

Subset direction: Let σ ∈ LHS+.
Either σ ∈ CP(ρ)+ or ∃nk | σ : nk ∈ CCP(ρ)+ ∧ ∃l |

rel(n)k
CP−−→ acq(n)l ≺trace e (or both):

Case 1: σ ∈ CP(ρ)+

If σ ∈ CP(ρ), then by the inductive hypothesis,
σ ∈ RHS . Since RHS = RHS+, σ ∈ RHS+.
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Otherwise (σ /∈ CP(ρ)), Algorithm 4 adds σ to
CP(ρ)+, which can happen only at line 5. Let j be such
that σ : mj ∈ CCP(ρ) (line 3) and T ∈ CP(mq) |
q ≥ j (line 4). By the inductive hypothesis on T ∈
CP(mq) (CP invariant), let e′ be such that thr(e′) =

T ∧ acq(m)q
CP−−→ e′ ≺trace e. Since e′ ≺trace e

and thr(e′) = thr(e), e′ HB−−→ e by the definition of
HB. Thus acq(m)q

CP−−→ e and therefore rel(m)q
CP−−→

acq(m)i by the definition of CP (recall that e = rel(m)i).
If q = j, then rel(m)j

CP−−→ acq(m)i. Otherwise, q > j

so acq(m)j
HB−−→ acq(m)q by the definition of HB. Thus

acq(m)j
CP−−→ e and therefore rel(m)j

CP−−→ acq(m)i by
the definition of CP. Because of those facts, together with
σ : mj ∈ CCP(ρ), by the inductive hypothesis (CP in-
variant), σ ∈ RHS . Since RHS = RHS+, σ ∈ RHS+.
Case 2: Let nk and l be such that σ : nk ∈ CCP(ρ)+ ∧
rel(n)k

CP−−→ acq(n)l ≺trace e.
If σ : nk ∈ CCP(ρ), then σ ∈ LHS , so by the

inductive hypothesis, σ ∈ RHS . Since RHS = RHS+,
σ ∈ RHS+.

Otherwise, ¬
(
σ : nk ∈ CCP(ρ) ∧ rel(n)k

CP−−→
acq(n)l ≺trace e

)
. We know rel(n)k

CP−−→ acq(n)l ≺trace

e, so therefore σ : nk /∈ CCP(ρ). Thus Algorithm 4
adds σ : nk to CCP(ρ)+, which can only happen
at line 8, which adds σ : nk to CCP(ρ)+. Let j be
such that σ : mj ∈ CCP(ρ) (line 3) and T : nk ∈
CCP(mq) | q ≥ j (line 7). By the inductive hy-
pothesis on T : nk ∈ CCP(mq) and the fact that
rel(n)k

CP−−→ acq(n)l ≺trace e (CP invariant), let e′ be
such that thr(e′) = T ∧ acq(m)q

CP−−→ e′ ≺trace e.
Since e′ ≺trace e and thr(e′) = thr(e), e′ HB−−→ e by
the definition of HB. Thus acq(m)q

CP−−→ e and there-
fore rel(m)q

CP−−→ acq(m)i by the definition of CP (recall
e = rel(m)i). If q = j, then rel(m)j

CP−−→ acq(m)i.
Otherwise, q > j so acq(m)j

HB−−→ acq(m)q by the
definition of HB. Thus acq(m)j

CP−−→ e and therefore
rel(m)j

CP−−→ acq(m)i by the definition of CP. We have
thus determined that σ : mj ∈ CCP(ρ) ∧ rel(m)l

CP−−→
acq(m)i ≺trace e, i.e., σ ∈ LHS . By the inductive hy-
pothesis, σ ∈ RHS . Since RHS = RHS+, σ ∈ RHS+.

Superset direction: Let σ ∈ RHS+.
Since RHS = RHS+, σ ∈ RHS . By the induc-

tive hypothesis, σ ∈ LHS . Since Algorithm 4 maintains
CP(ρ)+ ⊇ CP(ρ) and CCP(ρ)+ ⊇ CCP(ρ), therefore
σ ∈ LHS+.

Since LHS+ ⊆ RHS+∧,LHS+ ⊇ RHS+, LHS+ =
RHS+.

Proof of Lemma 4.

Let e = rel(m)i by thread T. Let e+ be the event imme-
diately after e in the observed total order (≺trace ). Let ρ be
any lockset owner. Let eρ be the event corresponding to ρ,
i.e., eρ = wr(x)h if ρ = xh, or eρ = acq(m)h if ρ = mh.

We define the following abbreviations for the left- and
right-hand sides of the CP invariant:

Let LHS = CP(ρ)∪
{
σ |

(
∃nk | σ :nk ∈ CCP(ρ)∧∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

) }
.

Let LHS+ = CP(ρ)+ ∪
{
σ |

(
∃nk | σ : nk ∈

CCP(ρ)+ ∧ ∃j | rel(n)k CP−−→ acq(n)j ≺trace e
+
) }

.

Let RHS =
{
σ |

(
∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace

e
) }

Let RHS+ =
{
σ |

(
∃e′ | appl(σ, e′)∧eρ

CP−−→ e′ ≺trace

e+
) }

.
Suppose Figure 3’s invariants hold before e, i.e., suppose

LHS = RHS . We call this assumption the “inductive hy-
pothesis” because we use this lemma’s result in the proof of
Theorem 1, which is by induction.

According to Lemma 3, the inductive hypothesis holds
after pre-release algorithm (Algorithm 4). Thus, we need to
show that LHS+ = RHS+ holds after the release algorithm
(Algorithm 5).

To show LHS+ = RHS+, we first show LHS+ ⊆
RHS+ (subset direction) and then LHS+ ⊇ RHS+ (su-
perset direction).

Subset direction: Let σ ∈ LHS+.
Either σ ∈ CP(ρ)+ or ∃nk | σ : nk ∈ CCP(ρ)+ ∧ ∃j |

rel(n)k
CP−−→ acq(n)j ≺trace e

+ (or both):

Case 1: σ ∈ CP(ρ)+.
If σ ∈ CP(ρ), then by the inductive hypothesis (CP

invariant), σ ∈ RHS , i.e., ∃e′ | appl(σ, e′) ∧ eρ
CP−−→

e′ ≺trace e. Since e ≺trace e
+, ∃e′ | eρ

CP−−→ e′ ≺trace

e+, so σ ∈ RHS+.
Otherwise (σ /∈ CP(ρ)), Algorithm 5 must add σ to

CP(ρ)+. Algorithm 5 adds to CP(ρ)+ only at line 4,
so σ = m and m ∈ CP(ρ)+. Line 3 thus evaluates to
true for ρ, so T ∈ CP(ρ). By the inductive hypothesis
(CP invariant), let e′ be such that thr(e′) = T ∧ eρ

CP−−→
e′ ≺trace e. By the definition of HB, e′ HB−−→ e, and thus
eρ

CP−−→ e ≺trace e
+ by the definition of CP. Therefore

m ∈ RHS+.
Case 2: Let nk and j be such that σ : nk ∈ CCP(ρ)+ ∧
∃j | rel(n)k CP−−→ acq(n)j ≺trace e

+.
If σ ∈ CCP(ρ)∧ rel(n)k CP−−→ acq(n)j ≺trace e, then

by the inductive hypothesis (CP invariant), σ ∈ RHS ,
i.e., ∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e. Since
e ≺trace e

+, then eρ
CP−−→ e′ ≺trace e

+, so σ ∈ RHS+.
Otherwise ¬

(
σ : nk ∈ CCP(ρ) ∧ ∃j | rel(n)k CP−−→

acq(n)j ≺trace e
)
. However, ∃j | rel(n)k CP−−→ acq(n)j ≺trace
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e because ∃j | rel(n)k CP−−→ acq(n)j ≺trace e+ and
e 6= acq(n)j . Therefore σ : nk /∈ CCP(ρ), so Algo-
rithm 5 adds σ : nk to CCP(ρ)+, which must happen at
line 7, and thus σ = m. Therefore T : nk ∈ CCP(ρ)
according to line 6. By the inductive hypothesis (CP in-
variant), ∃e′ | thr(e′) = T ∧ eρ

CP−−→ e′ ≺trace e. By the
definition of CP, eρ

CP−−→ e ≺trace e
+ since e = rel(m)i

and thr(e) = T. Therefore m ∈ RHS+.

Superset direction: Let σ ∈ RHS+.
Either σ ∈ RHS or not:

Case 1: σ ∈ RHS
Then σ ∈ LHS by the inductive hypothesis. Either

σ ∈ CP(ρ) or ∃nk | σ :nk ∈ CCP(ρ)∧∃j | rel(n)k CP−−→
acq(n)j ≺trace e (or both):

Case 1a: If σ ∈ CP(ρ), then σ ∈ CP(ρ)+ because
Algorithm 5 maintains CP(ρ)+ ⊇ CP(ρ).
Case 1b: Let nk be such that σ :nk ∈ CCP(ρ) ∧ ∃j |
rel(n)k

CP−−→ acq(n)j ≺trace e.
If n 6= m, then σ : nk ∈ CCP(ρ)+ since Algo-

rithm 5 only removes σ :nk from CCP(ρ)+ if n = m.
Otherwise, n = m. Since ∃j | rel(n)k

CP−−→
acq(n)j ≺trace e and e = rel(m)i, therefore acq(m)k

CP−−→
acq(m)i by the definition of CP. By the inductive
hypothesis (CP invariant) and Lemma 5 (introduced
and proved later in this section), T ∈ CP(mk) or
∃ol | o 6= m ∧ T :ol ∈ CCP(mk) ∧ ∃h | rel(o)l CP−−→
rel(o)h ≺trace e.

Case 1b(i): T ∈ CP(mk)
In the pre-release algorithm (Algorithm 4),

line 4 evaluated to true for σ :ml ∈ CCP(ρ) | l ≤
k (line 3). Thus line 5 executed, so σ ∈ CP(ρ).
Since the release algorithm (Algorithm 5) main-
tains CP(ρ)+ ⊇ CP(ρ), therefore σ ∈ LHS+.
Case 1b(ii): Let ol be such that o 6= m ∧ T : ol ∈
CCP(mk) ∧ ∃h | rel(o)l CP−−→ rel(o)h ≺trace e.

Then the pre-release algorithm (Algorithm 4)
executed line 8 for σ :mk ∈ CCP(ρ) (line 3) and
T : ol ∈ CCP(mk) (line 7). Line 8 added σ : ol

to CCP(ρ). The release algorithm (Algorithm 5)
does not remove σ : ol because o 6= m (line 14).
Therefore σ :ol ∈ CCP(ρ)+ and thus σ ∈ LHS+.

Case 2: σ /∈ RHS
Thus ∃e′ | appl(σ, e′) ∧ eρ

CP−−→ e′ ≺trace e+ but
@e′ | appl(σ, e′)∧eρ

CP−−→ e′ ≺trace e. Therefore eρ
CP−−→

e. Since e = rel(m)i, σ = m or σ = T. But σ = T

would imply ∃e′ | thr(e′) = T ∧ eρ
CP−−→ e′ ≺trace e,

contradicting σ /∈ RHS . Therefore σ = m.
By the definition of CP and the fact that e = rel(m)i,

let e′ be such that thr(e′) = T ∧ eρ
CP−−→ e′ ≺trace e.

By the inductive hypothesis (CP invariant), T ∈ CP(ρ)

or ∃nk | T : nk ∈ CCP(ρ) ∧ ∃j | rel(n)k
CP−−→

acq(n)j ≺trace e.
Case 2a: T ∈ CP(ρ)

Then line 3 in Algorithm 5 evaluates to true for ρ.
Therefore line 4 executes, so m ∈ CP(ρ)+ and thus
m ∈ LHS+.
Case 2b: Let nk and j be such that T :nk ∈ CCP(ρ)∧
rel(n)k

CP−−→ acq(n)j ≺trace e.
If n 6= m, then because T :nk ∈ CCP(ρ) matches

line 6 of Algorithm 5, line 7 adds m :nk to CCP(ρ)+.
Since e ≺trace e+, therefore m : nk ∈ CCP(ρ) ∧
rel(n)k

CP−−→ acq(n)j ≺trace e
+, i.e., m ∈ LHS+.

Otherwise (n = m), m : mk /∈ CCP(ρ)+ be-
cause Algorithm 5 removes m : mk from CCP(ρ)+

at line 14. Since rel(m)k
CP−−→ acq(m)j ≺trace e,

acq(m)k
CP−−→ acq(m)i ≺trace e by the definition

of CP (since e = rel(m)i). By the inductive hypoth-
esis (CP invariant) and Lemma 5, T ∈ CP(mk) or
∃ol | o 6= m ∧ T :ol ∈ CCP(mk) ∧ ∃h | rel(o)l CP−−→
acq(o)h ≺trace e (or both).

Case 2b(i): T ∈ CP(mk)
In the pre-release algorithm (Algorithm 4),

line 4 evaluated to true for T : mk ∈ CP(ρ)
(line 3). Thus line 5 executed, so T ∈ CP(ρ).
In the release algorithm (Algorithm 5), line 3 eval-
uates to true for ρ. Therefore Algorithm 5’s line 4
executes, so m ∈ CP(ρ)+ and thus m ∈ LHS+.
Case 2b(ii): Let ol and h be such that T : ol ∈
CCP(mk) ∧ rel(o)l

CP−−→ acq(o)h ≺trace e.
In the pre-release algorithm (Algorithm 4),

line 8 executed for T : mk ∈ CCP(ρ) (line 3)
and T : ol ∈ CCP(mk) (line 7). Line 8 added
T : ol to CCP(ρ). In the release algorithm (Al-
gorithm 5), line 7 executes for T : ol ∈ CCP(ρ)
(line 6), adding m : ol to CCP(ρ)+. In addition,
rel(o)l

CP−−→ acq(o)h ≺trace e
+ since e ≺trace e

+.
Therefore m ∈ LHS+.

Since LHS+ ⊆ RHS+∧,LHS+ ⊇ RHS+, LHS+ =
RHS+.

The proof of Lemma 4 relied on an additional lemma, which
we state and prove below. First we state a new definition.

According to the definition of CP, CP-ordered critical
sections on lock m are ordered either directly by Rule (a),
or indirectly through Rule (b) and Rule (c). We define the
CP-distance of mi and j, d(mj mi), as the following:

• 0 if ∃x, g, h, i′, j′ | j ≤ j′ < i′ ≤ i ∧ acq(m)j
′ PO−−→

wr(x)g
PO−−→ rel(m)j

′
∧ acq(m)i

′ PO−−→ wr(x)h
PO−−→

rel(m)i
′

• 1 + min d(nk  nl) | acq(m)j
HB−−→ rel(n)k

CP−−→
acq(n)l

HB−−→ rel(m)i
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Lemma 5. Let e be any release event, i.e., e = rel(m)i exe-
cuted by thread T. If there exists j such that acq(m)j

CP−−→ e,
and Figure 3’s invariants hold for all execution points up to
and including the point immediately before e, then after the
pre-release algorithm (Algorithm 4) executes but before the
release algorithm (Algorithm 5) executes, one or both of the
following hold:

• ∃j′ ≥ j | ∈ CP(mj′)
• ∃j′ ≥ j | ∃nk | n 6= m ∧ T : nk ∈ CCP(mj′) ∧ ∃l |
rel(n)k

CP−−→ acq(n)l ≺trace e ∧ d(nk nl) < d(mj 
mi)

Proof of Lemma 5.
Let e be any release event, i.e., e = rel(m)i executed

by thread T. Let j be such that acq(m)j
CP−−→ e. Suppose

Figure 3’s invariants hold for all execution points up to and
including the point immediately before e.

We prove the lemma by induction on the CP-distance
d(mj mi).

Base case. If d(mj  mi) = 0, then by the defini-
tion of CP-distance, ∃x, g, h, i′, j′ | j ≤ j′ < i′ ≤
i ∧ acq(m)j

′ PO−−→ wr(x)g
PO−−→ rel(m)j

′
∧ acq(m)i

′ PO−−→
wr(x)h

PO−−→ rel(m)i
′
.

By the CP-rule-A invariant, T’ ∈ CP(mj′) at rel(m)i
′
,

where T’ = thr(rel(m)i
′
). Because rel(m)i

′ HB−−→ rel(m)i

and the algorithms propogate HB-ordered events through CP
locksets, T ∈ CP(mj′) at e.

Inductive step. d(mj mi) > 0
Inductive hypothesis: Suppose the lemma holds true for

all nl and k such that d(nk nl) < d(mj mi).
By the definitions of CP and CP-distance, there exist nl

and k such that acq(m)j
HB−−→ rel(n)k

CP−−→ acq(n)l
HB−−→

rel(m)i, d(mj mi) = 1 + d(nk nl), and n 6= m. Either
rel(m)i ≺trace rel(n)l or rel(n)l ≺trace rel(m)i:

Case 1: rel(m)i ≺trace rel(n)l

Since acq(m)j
HB−−→ rel(n)k, at acq(n)l, there exists

k′ ≤ k such that Algorithm 3 adds T’ :nk
′

to CCP(mj),
where T’ = thr(acq(n)l). Since acq(n)l

HB−−→ rel(m)i,
and the algorithms propagate CCP through HB-ordered
events, at e = rel(m)i, T :nk

′ ∈ CCP(mj).
Case 2: rel(n)l ≺trace rel(m)i

Thus we cannot show that, at e = rel(m)i, T : nk
′
/∈

CCP(mj). To prove this case, we are interested in the
release of a lock like n with “minimum distance.” Let of

and g be such that
• d(of og) is as minimal as possible;
• rel(o)g ≺trace rel(m)i; and
• there exists f ′ ≥ f and σ such that, at rel(o)g ,
∃j′ ≥ j | σ :of ′ ∈ CCP(mj′) ∧
∃e′ | acq(m)j

CP−−→ e′ ∧ appl(σ, e′) ∧ e′ HB−−→ e.

Note that o may be n, or else o is some other “lower-
distance” lock, and thus d(of  og) < d(mj  mi)
in any case. Note that this includes the possibility that
o = m, in which case f < j and g < i.

Since d(of  og) < d(mj  mi), by the inductive
hypothesis, at rel(o)g (after the pre-release algorithm but
before the release algorithm), there exists f ′ ≥ f such
that either
• T’ ∈ CP(of

′
) or

• ∃qc | q 6= o ∧ T’ :qc ∈ CCP(of
′
) ∧

∃d | rel(q)c CP−−→ acq(q)d ≺trace rel(o)g ∧
d(qc qd) < d(of og)

where T’ = thr(rel(o)g).

Case 2a: T’ ∈ CP(of
′
)

At rel(o)g , the pre-release algorithm (Algorithm 4)
adds σ to CP(mj′) at line 5 because σ : of

′ ∈
CCP(mj′) (matching line 3) and T’ ∈ CP(of

′
)

(matching line 4). Since appl(σ, e′) ∧ e′ HB−−→ e,
and the algorithms propagate CP through HB-ordered
events, at e = rel(m)i, T ∈ CP(mj′).
Case 2b: Let qc and d be such that, at rel(o)g , q 6=
o∧T’ :qc ∈ CCP(of

′
)∧ rel(q)c CP−−→ acq(q)d ≺trace

rel(o)g ∧ d(qc qd) < d(of og).
Thus acq(q)d ≺trace rel(o)g ≺trace rel(q)d.
If rel(q)d ≺trace rel(m)i, then that would violate

the stipulation above that d(of og) is minimal. Thus
either rel(m)i = rel(q)d or rel(m)i ≺trace rel(q)d.

Case 2b(i): rel(m)i = rel(q)d

Thus m = q and i = d, but c < j since
d(mc mi) = d(qc qd) < d(mj mi).

At rel(o)g , the pre-release algorithm (Algo-
rithm 4) adds σ : mc to CCP(mj′) at line 8 be-
cause σ : of

′ ∈ CCP(mj′) (matching line 3)
and T’ : mc ∈ CCP(of

′
) (matching line 7).

Since appl(σ, e′) ∧ e′ HB−−→ e, and the algorithms
propagate CCP through HB-ordered events, at
e = rel(m)i, T :mc′ ∈ CCP(mj′).

By the inductive hypothesis on mi and c, since
d(mc mi) < d(mj  mi), there exists c′ ≥ c

such that, at rel(m)i, one or both of the following
hold:

• T ∈ CP(mc′)
The pre-release algorithm (Algorithm 4)

adds T to CP(mj′) at line 5 because T :
mc ∈ CCP(mj′) (matching line 3) and T ∈
CP(mc′) (matching line 4).
• ∃ra | r 6= m ∧ T : ra ∈ CCP(mc′) ∧
∃b | rel(r)a CP−−→ acq(r)b ≺trace rel(m)i ∧
d(ra rb) < d(mc mi)

The pre-release algorithm (Algorithm 4)
adds T : ra to CCP(mj′) at line 8 because
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T : mc′ ∈ CCP(mj′) (matching line 3) and
T : ra ∈ CCP(mc′) (matching line 7).

Case 2b(ii): rel(m)i ≺trace rel(q)d

Note that m 6= q because acq(q)d ≺trace

rel(o)g ≺trace rel(m)i ≺trace rel(q)d.
At rel(o)g , the pre-release algorithm (Algo-

rithm 4) adds σ : qc to CCP(mj′) at line 8 be-
cause σ : of

′ ∈ CCP(mj′) (matching line 3)
and T’ : qc ∈ CCP(of

′
) (matching line 7).

Since appl(σ, e′) ∧ e′ HB−−→ e, and the algorithms
propagate CCP through HB-ordered events, at
e = rel(m)i, T :qc

′ ∈ CCP(mj′).

Thus, the lemma’s conclusions hold for each case.

We are now ready to prove Theorem 1 from Section 7.

Theorem 1. After every event, Raptor (i.e., the analysis in
Algorithms 1–5) maintains the invariants in Figure 3.

Proof of Theorem 1. By induction on the events in the ob-
served total order of events.

Base case. Let e be the first event in the total order. Before
e, all locksets are empty, so the LHS of each invariant is
empty or false (depending on the invariant). The RHS of
each invariant is also empty or false, either because there is
no earlier event e′ ≺trace e (PO, HB, HB-index, HB-critical-
section, CP, and CCP-constraint invariants), or all locksets
are empty (CP-rule-A invariant).

The exception to the above is that PO() for “fake” ini-
tial accesses is non-empty, i.e., PO(x0) = { ξ } for every
variable x (Section 6.1). The PO invariant holds because we
assume that the first real access is PO ordered to the fake
initial access, i.e., wr(x)0 PO−−→ wr(x)1.

Inductive step. Suppose the invariants in Figure 3 hold
immediately before an event e. If e = wr(x)i, the invariants
hold after e, by Lemma 1. If e = acq(m)i, the invariants
hold after e, by Lemma 2. If e = rel(m)i, the invariants hold
after e, by Lemmas 3 and 4.

Finally, we prove the soundness and completeness theorem
from Section 7.

Theorem 2. An execution has a CP-race if and only if
Raptor reports a race for the execution.

Proof of Theorem 2. We prove the forward direction (=⇒)
and backward direction (⇐=) in turn:

Forward direction (completeness). Suppose a CP-race ex-
ists between two accesses xi and xi+1, but Raptor does not
report a CP-race. Thus wr(x)i 6CP−−→ wr(x)i+1 ∧ wr(x)i 6PO−−→
wr(x)i+1, but ξ ∈ CP(xi) ∪ PO(xi) at program termina-
tion. According to Theorem 1, by the CP and PO invariants,
ξ /∈ CP(xi) ∨ ξ /∈ PO(xi) at program termination, which is
a contradiction.

Backward direction (soundness). Suppose Raptor reports a
CP-race between two accesses xi and xi+1, but no CP-race
exists. Thus ξ /∈ CP(xi) ∪ PO(xi) at program termination,
but wr(x)i CP−−→ wr(x)i+1 ∨ wr(x)i

PO−−→ wr(x)i+1.
Since ξ /∈ PO(xi) at program termination, according

to Theorem 1, by the PO invariant, wr(x)i 6PO−−→ wr(x)i+1.
Thus wr(x)i CP−−→ wr(x)i+1. By the CP invariant, at program
termination,

ξ ∈ CP(xi) ∨
(
∃nk | ξ :nk ∈ CCP(xi) ∧ ∃j | rel(n)k CP−−→

acq(n)j ≺trace e
Ω
)

where eΩ represents a final “program termination” event.
Since ξ /∈ CP(xi), ∃nk | ξ : nk ∈ CCP(xi). By the CCP-
constraint invariant, ∃l | acq(n)l ≺trace e

Ω ∧ rel(n)l 6≺trace

eΩ. But a thread releases all of its held locks before program
termination (Section 8), so rel(n)l 6≺trace e

Ω is a contradic-
tion.

C. Detailed Analysis Changes for Reads
This section presents Raptor’s analysis that handles not only
writes but also reads, corresponding to the changes described
in Section 9. Algorithm 8 adds analysis steps to handle a read
event. Algorithm 9 modifies the analysis for a write event
(Algorithm 2) to handle reads.
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Algorithm 8 rd(x)iT by T

1: . Apply Rule (a)
2: . Write-Read Race
3: for all m ∈ heldBy(T) do
4: if ∃j∃h | mj

∗ ∈ HB(xh) ∧ T /∈ PO(xh) then
5: CP(mj)+ ← CP(mj)+ ∪ {T}
6: end if
7: end for
8: . Add termination CCP elements
9: if T ∈ PO(xi) then

10: PO(xi)+ ← PO(xi)+ ∪ {ξT}
11: end if
12: if T ∈ HB(xi) then
13: HB(xi)+ ← HB(xi)+ ∪ {ξT}
14: end if
15: if T ∈ CP(xi) then
16: CP(xi)+ ← CP(xi)+ ∪ {ξT}
17: end if
18: for all m | T :m ∈ CCP(xi) do
19: CCP(xi)+ ← CCP(xi)+ ∪ {ξT :m}
20: end for
21: . Initialize locksets for xiT.
22: . Reset locksets if xiT already exists.
23: if T ∈ PO(xiT) then
24: PO(xiT)← ∅,HB(xiT)← ∅
25: CP(xiT)← ∅,CCP(xiT)← ∅
26: end if
27: PO(xiT)← {T}
28: HB(xiT)← {T} ∪ {mv

∗ | mv ∈ heldBy(T)}

Algorithm 9 Modified wr(x)i by T

1: . First apply Rule (a)
2: . Write-Write and Read-Write Race
3: for all m ∈ heldBy(T) do
4: if ∃j∃h | mj

∗ ∈ HB(xh) ∧ T /∈ PO(xh) then
5: CP(mj)+ ← CP(mj)+ ∪ {T}
6: end if
7: for all Threads t do
8: if ∃j∃h | mj

∗ ∈ HB(xht ) ∧ T /∈ PO(xht ) then
9: CP(mj)+ ← CP(mj)+ ∪ {T}

10: end if
11: end for
12: end for
13: . Add termination CCP elements
14: if T ∈ PO(xi−1) then
15: PO(xi−1)+ ← PO(xi−1)+ ∪ {ξ}
16: end if
17: if T ∈ HB(xi−1) then
18: HB(xi−1)+ ← HB(xi−1)+ ∪ {ξ}
19: end if
20: if T ∈ CP(xi−1) then
21: CP(xi−1)+ ← CP(xi−1)+ ∪ {ξ}
22: end if
23: for all m | T :m ∈ CCP(xi−1) do
24: CCP(xi−1)+ ← CCP(xi−1)+ ∪ {ξ :m}
25: end for
26: for all Threads t do
27: if T ∈ PO(xi−1

t ) then
28: PO(xi−1

t )+ ← PO(xi−1
t )+ ∪ {ξ}

29: end if
30: if T ∈ HB(xi−1

t ) then
31: HB(xi−1

t )+ ← HB(xi−1
t )+ ∪ {ξ}

32: end if
33: if T ∈ CP(xi−1

t ) then
34: CP(xi−1

t )+ ← CP(xi−1
t )+ ∪ {ξ}

35: end if
36: for all m | T :m ∈ CCP(xi−1

t ) do
37: CCP(xi−1

t )+ ← CCP(xi−1
t )+ ∪ {ξ :m}

38: end for
39: end for
40: . Initialize locksets for xi

41: PO(xi)← {T}
42: HB(xi)← {T} ∪ {mv

∗ | mv ∈ heldBy(T)}
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