
Analysis and Testing of Notifications in
Android Wear Applications

Techincal Report OSU-CISRC-11/16-TR04, Ohio State University

Hailong Zhang and Atanas Rountev
Ohio State University, Columbus, OH, USA
Email: {zhanhail,rountev}@cse.ohio-state.edu

Abstract—Hundreds of millions of wearable devices are ex-
pected to be deployed in the near future. Android Wear (AW) is
Google’s platform for developing applications for such devices.
Our goal is to make a first step toward a foundation for
analysis and testing of AW apps. We focus on a core feature
of such apps: notifications that are issued by a handheld device
(e.g., a smartphone) and are displayed on a wearable device
(e.g., a smartwatch). We first define a formal semantics of AW
notifications in order to capture the core features and behavior of
the notification mechanism. Next, we describe a constraint-based
static analysis to build a model of this run-time behavior. We then
use this model to develop a testing tool which executes test cases
across the two devices and measures coverage for AW-specific
coverage criteria. We also develop the first tool for automated test
generation and GUI exploration for AW apps. These contributions
advance the state of the art and enable future analyses and tools
in this increasingly important area.

I. INTRODUCTION

Wearable devices. Electronic wearable devices are designed
to be worn on the body in order to enable mobility and hands-
free/eyes-free activities. While smartwatches and fitness wrist-
bands are currently the most widely used such devices, other
device categories are also expected to become increasingly
popular, including head-mounted displays, smart jewelry, body
cameras, and smart garments.

Traditional mobile devices require direct manipulation,
resulting in high cognitive and perceptual load that causes
distractions for the user. Wearable devices are supposed to
reduce this load, and to allow interactions that are embedded,
context-aware, personalized, adaptive, and anticipatory. The
long-term trend is toward devices rich with environmental and
physiological sensors (e.g., GPS, accelerometer, heart rate)
with a wide range of uses in healthcare, fitness, entertainment,
manufacturing, construction, field work, etc. Wearable devices
are expected to become one of the fastest growing markets in
computing. A recent industry report forecasts that over 320
million wearable devices will be shipped in 2017 [1].

Software applications written for wearable devices present
a variety of interesting challenges for software engineering
researchers—for example, security/privacy, power consump-
tion, UIs optimized for device limitations, and software evolu-
tion due to a rapidly evolving marketplace. In this context,
it will be essential to develop a body of work on static
and dynamic analyses for program understanding, testing,
debugging, optimization, and evolution. Our work aims to
make an initial contribution in this direction.

Android Wear. Android Wear (AW) is Google’s software
platform for developing applications for wearable devices [2].
At a high level, there are two major categories of AW apps.
First, a wearable device may work in conjunction with a
companion handheld device which is typically a smartphone
or a tablet. The software on the wearable and the software on
the handheld interact through APIs defined by the platform.
A second scenario is when a stand-alone wearable device
contains software running independently. Stand-alone AW apps
are not well supported by the current AW version 1.5, but are
expected to become more popular because of better support in
the upcoming AW version 2.0 (to be released officially in the
last few months of 2016). Thus, for the rest of this paper, we
consider AW apps in which software runs both on a wearable
and a companion handheld.

Our work focuses on a core feature of AW apps: notifi-
cations that are issued by the handheld and displayed on the
wearable. In fact, the building and issuing of notifications is the
first topic that is introduced by Google’s AW developer guide
[3]. When a notification is displayed, the user can perform an
action that returns the flow of control back to the handheld.

Our contributions. To the best of our knowledge, this key
aspect of AW app behavior has not been studied in prior
work. Given the increasing importance of wearable devices
and the growing popularity of Android Wear, it is highly
desirable to establish foundations for analysis and testing
of such applications. Our work aims to make an initial but
substantial contribution toward this goal, setting the stage for
future analyses and tools in this exciting new area.

The specific contributions of this work can be briefly
summarized as follows. First, we define a formal semantics
of AW notifications. Using abstracted syntax and operational
semantics, we capture the core features and behavior of the
AW notification mechanisms. Second, we describe a static
analysis to build a static model of this run-time behavior. The
analysis is based on static abstractions of relevant run-time
entities, together with a constraint-based representation of the
important relationships between these entities. Third, we use
the model to develop a testing tool which executes test cases
across the handheld and the wearable, and measures run-time
coverage for several AW-specific coverage criteria. As far as
we know, this is the first test coverage tool proposed for AW
apps. Fourth, we develop the first tool that allows automated
test generation and GUI exploration for AW apps, based on the
output of the static analysis. Finally, we present experimental
results and case studies to evaluate the proposed techniques.

1 class MyNotificationManager {
2 void create() {
3 Builder builder = new Builder();
4 Intent mainIntent = new Intent(MainActivity.class);
5 PendingIntent mainPI = PendingIntent.getActivity(mainIntent);
6 WearableExtender extender = new WearableExtender();
7 if (...) {
8 Notification chatPage = new Builder().build();
9 extender.addPage(chatPage);

10 }
11 Intent replyIntent = new Intent(RemoteMessagingReceiver.class);
12 PendingIntent replyPI = PendingIntent.getBroadcast(replyIntent);
13 Action replyAction = new Action.Builder(replyPI).build();
14 extender.addAction(replyAction);
15 Intent readIntent = new Intent(MarkReadReceiver.class);
16 PendingIntent readPI = PendingIntent.getBroadcast(readIntent);
17 Action readAction = new Action.Builder(readPI).build();
18 extender.addAction(readAction);
19 builder.setContentIntent(mainPI).extend(extender);
20 NotificationManager.notify(builder.build());
21 }
22 }

Fig. 1. Simplified code from QKSMS. Fig. 2. Screens on a smartwatch.

II. BACKGROUND AND EXAMPLE

Our focus are Android Wear applications which are defined
for and run on a handheld device (e.g., a smartphone), but use
a wearable device (e.g., a smartwatch) to display notification to
the user and to receive user feedback. In essence, the wearable
device becomes an extension of the GUI for the handheld
device. In practice, this means that there is one application
APK (running on the handheld), and API calls are issued in
this APK to trigger certain behaviors on the wearable. The
vast majority of current AW applications fall in this category.
Two other alternatives are also possible. First, there could be
an APK running on the handheld and another APK running
on the wearable, with inter-device communication provided
by relevant APIs. Second, there could be a standalone APK
on the wearable, without the need to a companion handheld.
While both of these scenarios are interesting for future work,
at present they are rarely used and are not considered here.

A notification is displayed as a sequence of screens on the
wearables. Swiping left and right allows the user to navigate
between the screens. There are two categories of screens
according to their functionality and content: pages and actions.
A page displays the content of a notification, including title,
text, and icon. It is a passive entity—the user observes the
information but does not interact with it. An action is a screen
containing a title and an action button; the user can click the
button to execute some desirable functionality by triggering
code that executes on the handheld device.

A. Sample Android Wear App

Figure 1 presents a simplified version of code from the
QKSMS open-source Android Wear app. Non-essential details
have been removed or simplified for clarity. This messaging
app interacts with a smartwatch to issue notifications. The call
to notify at line 20 results in several screens being displayed
on the smartwatch, as illustrated in Figure 2. The main page
is displayed first. The title of this page is “Test Account”
(the message sender identifier) and the page text “Aloha” is
the content of the message. If the user swipes to the left,
another nested page is displayed with the chat history for
this message sender. Another swipe shows the “Reply” action.
Through additional swiping the user can access three more

actions. The last one (“Block app”) is a default AW action
that blocks further notification from this app.

In general, a notification has at least one page (the main
page) as well as the “Block app” action. There can be
additional pages following the main page. These pages are
followed by a sequence of actions. When an action’s button
is touched by the user, the AW framework executes code on
the handheld. For example, for the “Open on phone” action,
a screen will be opened on the handheld to display the list of
conversations. The executed code is in class MainActivity
and is triggered using the Intent object at line 4 in Figure 1.

B. Main Concepts and APIs

The key concepts for the notification mechanism are: (1) a
notification builder object is used as a factory for notification
objects; (2) a wearable extender is a helper object which,
when applied to a notification builder, causes the creation of
wearable-specific notifications; (3) several actions can be in-
cluded in a notification to allow the user of the wearable device
to respond; (4) an intent inside an action determines which
handheld app component is invoked in response; (5) nested
pages can also be included in the extender/builder/notification.

Lines 3 and 8 in Figure 1 create notification builder objects.
These are instances of class NotificationCompat.Builder,
shortened to Builder in the example. Line 6 creates a wear-
able extender. The builders and the extender are ultimately
used to create a notification object (call to build at line 20)
and to display it on the wearable (call to notify at line 20).

In general, notifications can be displayed both on handheld
devices and on wearable devices. Wearable-specific notifica-
tions are created using wearable extender objects. An extender
adds more features to a builder. For example, the call to
extend at line 19 adds the actions and nested pages of
extender into builder. Earlier API calls populate the exten-
der with these actions (lines 13 and 18, calls to addAction)
and nested pages (line 8, call to addPage).

An action object describes a screen to be displayed on the
wearable device. The screen contains a title (e.g., “Mark as
read”) and has an underlying Intent. When the user swipes
to this screen and touches the icon, the intent is used to trigger

2

an app component on the handheld device. For the running
example, an action object for “Reply” is created at line 13,
using a helper action builder object. This action is associated
with an intent to execute RemoteMessagingReceiver (line
11), an app component that operates on the handheld device.
This component is an example of a broadcast receiver, a
standard Android component type that operates in the back-
ground and responds to requests sent through intents. Another
intent, created at line 15, is used to trigger a broadcast receiver
MarkReadReceiver on the handheld, in response to the action
created at line 17. Both actions are added to the extender,
and then copied to the builder (via extend) and then to the
notification created at line 20 via build.

An instance of class Intent contains an abstract descrip-
tion of an operation to be performed. This is the general An-
droid mechanism for triggering app components. For example,
if one activity (another standard component type in Android) in
a handheld device app wants to trigger another activity in the
same app, it typically invokes startActivity and provides as
parameter an intent that describes the target activity. Similarly,
a call to sendBroadcast is used to trigger a broadcast receiver
based on a given intent. Because of the widespread use of
this mechanism, prior work (e.g., [4]–[6]) has considered the
semantics of intents and the static modeling of this semantics.

For an intent to be used as part of the notification mecha-
nism analyzed in our work (which works across two devices
rather than inside a single device), it has to be wrapped by a
helper PendingIntent object. Lines 12 and 16 in the example
show the creation of these helper objects. The pending intent
is given to the Android notification manager as part of the
action object, and when the action is actually performed (i.e.,
the action icon is touched by the user), the pending intent is
used to access the underlying “regular” intent. At that time,
the conceptual equivalent of a call such as startActivity or
sendBroadcast occurs using that intent object.

The call to setContentIntent at line 19 is used to add
a default “Open on phone” action to the builder. The action is
implicitly created as part of this API call. In this example, the
target of this action is MainActivity (via the intent created
at line 4). This activity is executed on the handheld in order
to display the list of conversations.

Line 8 creates a notification object and line 9 uses addPage
to add it to the extender and thus to the notification being
created by build at line 20. Note that both line 8 and line
20 invoke build on a notification builder, and produce a
Notification instance. In this case one of the notifications
(line 20) corresponds to the main notification page and the
other one (line 8) to a nested page for the chat history.

In the context of this informal description, the next section
formalizes the key abstractions and defines precisely their run-
time effects. This formalization serves as the foundation for the
proposed static analysis and its testing clients.

III. FORMAL SEMANTICS OF NOTIFICATIONS IN
ANDROID WEAR APPLICATIONS

The formal definition of the run-time semantics of notifi-
cations in Android Wear applications is based on several sets
of run-time entities and relations among them. Some of these

definitions are for “plain” Java (loosely based on formaliza-
tions from [7], [8]), others for “plain” Android (derived from
our prior work [9]–[11]), and some are newly-developed by us
specifically for Android Wear applications.

A. Plain Java and Plain Android

Plain Java. Our discussion focuses on the semantics of
individual statements inside method bodies. The modeling of
the type system and the behavior due to calls and returns is
well understood (e.g., [7], [8], [12]) and is elided for simplicity.

A Java program contains a set of Java classes. Each class
defines a set of fields f ∈ Field and a set of methods and
constructors. A method body contains declarations of local
variables x ∈ Var and a control-flow graph in which nodes
are statements. The syntax of these statements is defined by

s ::= x = new C | x = y | x = y.f | x.f = y

Generalizations to include method calls and other Java fea-
tures are well known and are not discussed. The corresponding
semantics is based on a set Obj of heap objects, a map Store
that defines how local variables refer to these objects, and a
map Heap to represent the values of object fields.

o ∈ Obj heap objects
σ ∈ Store = Var→ Obj variable values
H ∈ Heap = (Obj× Field)→ Obj field values

The semantic effects on the store and the heap are

〈x = new C, σ,H〉 → 〈σ[x 7→ o],H〉
〈x = y, σ,H〉 → 〈σ[x 7→ σ(y)],H〉
〈x = y.f, σ,H〉 → 〈σ[x 7→ H(σ(y), f)],H〉
〈x.f := y, σ,H〉 → 〈σ,H[(σ(x), f) 7→ σ(y)]〉

The rules show the updated store/heap; a[b 7→ c] shows
that map a is updated by (re)mapping b to c. For x = new C,
o ∈ Obj denotes a new heap object of class C.

Plain Android. Our prior work on analysis of Android GUIs
[9], [13] defined the GUI-related semantics of several impor-
tant Android features (e.g., activities, menus, dialogs, widgets,
layout definitions, event listeners, etc.). These definitions are
not directly related to the problem considered in this paper,
but the AW semantics described below can be considered as
an extension of these existing definitions.

B. Notifications in Android Wear

A notification is a message displayed outside an applica-
tion’s normal GUI. For the AW applications we consider, an
application running on a handheld device uses notifications to
display information on a companion wearable device.

Instances of the relevant AW classes, and the sets of all
such instances, will be denoted as follows

no ∈ Notif ⊂ Obj notifications
nb ∈ NotifBuilder ⊂ Obj notification builders
we ∈ WearExtender ⊂ Obj wearable extenders
ac ∈ Action ⊂ Obj actions
in ∈ Intent ⊂ Obj intents
pi ∈ PendingIntent ⊂ Obj pending intents

These objects were discussed informally in Section II.

3

After a notification is created in the handheld device app,
it can trigger a new screen on the wearable device. This
is done through a call to notify, as illustrated by line 20
in Figure 1. For the purposes of control-flow and data-flow
analysis, notify causes the execution of event-processing
logic on the wearable device, which then triggers event-
handling code back in the handheld device, in a component
such as an activity or a broadcast receiver.

The problem of analyzing inter-component control flow and
data flow in Android apps is of fundamental importance and
has been the target of many existing analyses (e.g., [4]–[6],
[10], [11]). For AW apps, notify is a control-flow exit point
which has to be matched with a subsequent re-entry point in
the handheld app code. In essence, the notification mechanism
provides a new path for inter-component control/data flow, but
this time involving two devices. Our static analysis is the first
approach to model this kind of inter-component interactions.
The matching of control-flow exit points and re-entry points is
part of the analysis output, and can be used for the purposes of
other static analyses and their clients (e.g., testing, debugging,
security analysis, and profiling).

C. Builders, Extenders, and Notifications

There are several categories of API calls that are related to
builders, extenders, and notifications created from them. The
specifics of these calls can be abstracted using several abstract
operations. The subset of API calls relevant for our purposes
is captured by the following definitions for the abstract syntax
of statements s:

s ::= x = addaction(y, z) | x = setaction(y, z) |
x = extend(y, z) | x = build(y) | notify(x)

Adding actions. Abstract operation addaction represents an
API call that adds an action to a wearable extender, and thus
to wearable-specific notifications created with the help of this
extender. Parameter y refers to the extender, while z refers to
the action being added. The return value of addaction is a
reference to the updated extender (i.e., x and y are aliases).

To express the semantics of addaction, we generalize the
heap with an artificial field weactions ∈ Field for extenders
we ∈WearExtender:

Heap = . . . ∪ (WearExtender × {weactions} → Action∗)

The field stores the sequence of actions that have been
added to the extender. The semantics can be expressed as

〈x = addaction(y, z), σ,H〉 →
〈σ[x 7→ σ(y)],
H[(σ(y), weactions) 7→ H(σ(y), weactions) ◦ σ(z)]〉

where ◦ denotes the concatenation of sequences.

The same addaction operation can be applied to a noti-
fication builder. The modeling is similar: a field nbactions
is defined for builder objects, and the effects of the operation
are similar to the ones for extenders.

Default action. A notification builder can have a default
wearable-specific action “Open on phone”, as illustrated in
the running example. If setContentIntent is called on a
builder (line 19 in Figure 1), this implicitly creates such a
default action and associates it with the builder. We model

these effects using an abstract operation x = setaction(y, z)
where y refers to a builder and z refers to the action. A field
default models this association

Heap = . . . ∪ (NotifBuilder × {default} → Action)

The semantics of setaction is to map H(σ(y), default)
to σ(z) and to copy the value of y to x.

Extending a builder. An abstract operation x = extend(y, z)
takes as input a notification builder referenced by y and a wear-
able extender referenced by z. The return value is a reference to
the same builder object. When extend is executed, a snapshot
of the current state of the extender is stored inside the builder.
In our semantic definitions, this can be modeled by copying the
action list of the extender to the builder. Thus, we introduce a
field weactions in the builder, and set H(σ(y), weactions)
to have the value of H(σ(z), weactions).

Building notifications. An operation x = build(y) uses the
state of the builder referenced by y to create and initialize a
notification object no ∈ Notif. Local variable x is assigned
a reference to no. As with the builders and extenders, a key
property of the object state is the list of actions, which requires
the following heap extension:

Heap = . . . ∪ (Notif × {actions} → Action∗)

Given nb = σ(y), the actions for the new notification are
defined as follows. If weactions in nb is not empty, the new
notification’s actions field is set to be H(nb, weactions) ◦
H(nb, default). However, if weactions is empty, actions
is set to H(nb, nbactions) ◦H(nb, default). This behavior
corresponds to two scenarios. First, if nb was extended by
an extender with a non-empty action list, these actions are
the ones shown on the wearable (followed by nb’s default
action). It is also possible for an extender to provide no actions,
but rather to set other options—e.g., the display style. In this
case actions added directly to the builder are displayed on the
wearable.

In addition, a pre-defined “Block app” action is added at the
end of the action list, to allow blocking of further notifications.
Figure 2 illustrates the resulting sequence of actions.

D. Actions and Intents

To model API calls related to intents, pending intents, and
actions, we define the following abstract syntax:

s ::= x = buildpending(y) | x = buildaction(y)

Operation buildpending abstracts API calls that build a
pending intent wrapped around a regular intent referenced by
y. Lines 5, 12, and 16 in Figure 1 contain examples of such
calls. The resulting pending intent can then be used when a
new action object is created: in the second production above, y
refers to this pending intent. Operation buildaction abstracts
two cases: (1) a construction call in a new Action expression,
and (2) the use of an action builder, as illustrated at lines
13 and 17 in Figure 1. Similarly to how notification builders
are used to create notifications, action builders can be used to
create actions. For simplicity we elide the relevant details, but
our implementation handles both cases.

Regardless of how an action object is created, part of its
internal state is a pending intent. In the semantic definitions
we need heap generalizations

4

Heap = . . . ∪ (PendingIntent× {intent} → Intent)
∪ (Action× {pending} → PendingIntent)

The semantics of buildpending and buildaction is as
expected and is not shown in detail.

E. Nested Pages

Each notification object displays a main notification page.
However, sometimes additional information may be needed to
provide more details. Such information can be displayed on
nested pages, accessible when the user swipes to the left. Such
pages can be added by creating additional notification objects
and attaching them to the main notification object. Notification
chatPage in Figure 1 is an example of a nested page.

The abstract syntax is s ::= x = addpage(y, z), where
y refers to a wearable extender and z refers to the nested
notification object. The sequence of pages added to an extender
can be represented by a field pages:

Heap = . . . ∪ (WearExtender × {pages} → Notif∗)

In the semantic definition, H(σ(y), pages) is updated by
appending σ(z); in addition, y is copied into x. We also need to
generalize builders and notifications with similar fields pages.
The semantics of extend and build includes the copying of
the value of pages to a builder or a notification, respectively.

Two additional aspects of the semantics should be noted.
First, suppose that a notification no contains a nested page
no′. Even though no′ may have its own actions, they do not
affect the actions for no. In other words, H(no, actions) is
independent of H(no, pages). Second, when no is actually
displayed on the wearable device, repeated swiping to the left
will first show the sequence of its nested pages, and then the
sequence of its actions. This behavior is illustrated by Figure 2.

IV. STATIC ANALYSIS

Given the abstracted language from the previous section,
we develop a static analysis of the creation and propagation
of notifications and related objects. Specifically, the analysis
defines static abstractions of relevant objects, models the
propagation of references to such objects, and determines
important relationships between them.

A similar reference-propagation problem for plain Java can
be solved using a constraint graph. A graph node corresponds
to a variable x ∈ Var, a field f ∈ Field, or an allocation
new C. Edges encode constraints on values. For example, an
assignment x = y is represented by an edge y → x, showing
that the set of values for y is a subset of the set of values for x.
Forward reachability from new C determines which variables
and fields refer to the corresponding C instances. Such an
analysis is classified as a flow-insensitive, context-insensitive,
field-based reference analysis [14], [15]. Our analysis for AW
apps generalizes this approach. Various precision extensions
of this standard Java analysis can be defined (e.g., [8], [15],
[16]) and can be combined with our AW-specific analysis.

The conceptual input to the analysis is a program repre-
sentation based on the abstracted semantics presented earlier.
Figure 3 shows this representation for the running example.
The analysis implementation works on the three-address Jim-
ple representation from the Soot analysis framework [17] and
conceptually maps call statements to these abstract operations.

1 Builder a = new Builder();
2 Intent b = new Intent(MainActivity.class);
3 PendingIntent c = buildpending(b);
4 WearableExtender d = new WearableExtender();
5 Builder e = new Builder();
6 Notification f = e.build();
7 addpage(d,f);
8 Intent g = new Intent(RemoteMessagingReceiver.class);
9 PendingIntent h = buildpending(g);

10 Action i = buildaction(h);
11 addaction(d,i);
12 Intent j = new Intent(MarkReadReceiver.class);
13 PendingIntent k = buildpending(j);
14 Action l = buildaction(k);
15 addaction(d,l);
16 Action m = buildaction(c);
17 Builder n = setaction(a,m);
18 extend(n,d);
19 Notification o = build(a);
20 notify(o);

Fig. 3. Abstracted program representation.

Builder1

a

setaction17build19

bbuildpending3 Intent2

c

buildaction16

WearableExtender4

d

addpage7 addaction11 addaction15extend18

Builder5

e

build6

f

Intent8

g

buildpending9

h

buildaction10

i

Intent12

j

buildpending13

k

buildaction14

l

m

no

notify20

Fig. 4. Constraint graph for the running example.

A. Constraint Graph

Operation nodes. In addition to the standard constraint graph
nodes listed above, we use a set OP of operation nodes.
The abstract operations defined in the previous section are
represented by such nodes. For x = op(y), the corresponding
node n has an incoming edge from the node for variable y,
and an outgoing edge to the node for x. If the operation has
two parameters, there is a second incoming edge. Figure 4
shows the constraint graph for the running example. Numerical
suffixes correspond to line numbers in Figure 3.

Object creation. Node sets NB, WE, IN, BN, BP, and BA
represent run-time objects created by program statements. Let
NB be the set of allocation nodes corresponding to new expres-
sions that create notification builders (e.g., nodes Builder2
and Builder5 in Figure 4). Similarly, let WE be the set of
nodes for wearable extender new expressions, and IN be the
similar set for intents.

In addition to new expressions, operation nodes may create
new objects. A notification is created with x = build(y).
Each such operation corresponds to a constraint graph node
n ∈ BN ⊂ OP. In the example, BN = {build6, build19}.

5

Similarly, x = buildpending(y) creates a pending intent and
is represented by a node n ∈ BP ⊂ OP. Finally, action objects
can be created either with new expressions, or with build
calls on action builders. Both cases are abstracted with x =
buildaction(y), for which we have a node n ∈ BA ⊂ OP.
In the example, BA contains three buildaction nodes.

B. Constraint-Based Analysis

We define the analysis in terms of several relations. These
relations are described in declarative fashion, using several
inference rules. As usual, the rules should be read “if the
premises (above the line) are true, the conclusion (below the
line) is also true”. Later we describe how the relations are
actually computed.

The flow of object references is represented by flowsto ⊆
(NB ∪ WE ∪ IN ∪ BN ∪ BP ∪ BA) × (Var ∪ Field ∪ OP).
A pair n flowsto n′ shows that an object represented by n
is propagated to a variable, a field, or a parameter of an
operation. The inference rules for standard propagation are
straightforward. For a node n ∈ NB∪WE∪ IN∪BN∪BP∪BA
with a left-hand side variable x,

n→ x

n flowsto x

Transitivity is defined as expected: for any n, n′, n′′

n flowsto n′ n′ → n′′

n flowsto n′′

Builders and extenders. Additional relations are used to
capture the AW-specific abstractions introduced in Section III
For example, x = setaction(y, z) takes as input a builder y
and an action z. Relation default ⊆ NB × BA represents the
effects of the corresponding node n and is defined as follows:

nb flowsto1 n ac flowsto2 n n→ x

nb flowsto x nb default ac

Here the subscript indicates whether the flow is to the first or to
the second parameter of the operation. The rule for addaction
on an extender (or a builder) is similar: it adds a pair to binary
relation weactions ⊆WE× BA (or nbactions ⊆ NB× BA).

To represent the effects of x = extend(y, z) we use a
relation extends ⊆WE× NB

nb flowsto1 n we flowsto2 n n→ x

nb flowsto x we extends nb

Notifications. Operation x = build(y) creates a new notifica-
tion based on builder y. The state of this builder, together with
the state of its associated extender, determine the content of
the notification. Thus, we want to record the triple of build
call site, builder, and extender as a static abstraction of the
run-time notification object. Let NO ⊆ BN×NB×WE denote
the set of all such recorded triples. For a node bn representing
a build operation, we have

nb flowsto bn we extends nb
(bn,nb,we) ∈ NO

This set is one of the outputs of our analysis. Further, for
each triple no ∈ NO, we need to determine the set of relevant

actions. Relation actions ⊆ NO×BA captures this information:
no actions n shows that the actions created by node n (which
is a buildaction site) are in the action list for no. Three
rules for a build node bn represent this association. First,
any action of the extender is copied into the notification.

no = (bn,nb,we) ∈ NO we weactions ac
no actions ac

Second, the default action of the builder is added.

no = (bn,nb,we) ∈ NO nb default ac
no actions ac

Finally, if there are no actions from the extender, the builder’s
actions are added.

no = (bn,nb,we) ∈ NO
nb nbactions ac @ we weactions ac′

no actions ac

In addition to the notifications and their actions, the analysis
outputs which triples no ∈ NO flow to which calls to notify.
For any such no = (bn, . . .), if bn flowsto n where n is a call
to notify, the pair (no, n) is reported by the analysis.

Actions and intents. For a node n ∈ BA corresponding to x =
buildaction(y), the incoming edge y → n represents the
flow of a pending intent. The outgoing edge n→ x propagates
the static abstraction of the created action (i.e., node n) to the
left-hand-side variable x. The association between the action
and the pending intent is represented by a relation pending ⊆
BA× BP. The inference rule is as expected:

pi flowsto n

n pending pi

The modeling of x = buildpending(y) is similar: it updates
a relation intent ⊆ BP× IN which associates a pending intent
with the underlying real intent.

Nested pages. The modeling of nested pages, created by x =
addpage(y, z), is similar to the modeling of actions. Relation
pages ⊆ WE × BN records which notifications are added to
which extenders at addpage nodes n

we flowsto1 n bn flowsto2 n n→ x

we flowsto x we pages bn

Note that the actions of the notification used at addpage will
not affect other notifications that are built with we . Thus, we
abstract a nested notification using only its build site bn ∈
BN and do not model the specific builder/extender used at bn .

At a call to build, the pages list of the extender is copied
to the new notification.

no = (bn,nb,we) ∈ NO we pages bn ′

no pages bn ′

Here relation pages is extended to include a subset of NO×BN.

Analysis algorithm. Computing a solution to the system of
constraints is done in several stages. First, the constraints graph
is build from the program representation. Next, forward reach-
ability from n ∈ NB ∪WE ∪ BA to addaction, setaction,
and extend nodes is used to compute relations weactions,
nbactions, and extends. Then, set NO is determined based

6

on reachability from notification builders to build nodes, and
relation actions for no ∈ NO is computed. Finally, reachabil-
ity from build to notify nodes is examined. The processing
of addpages, buildaction, and buildpending is done in
a similar manner. The Intent sites reaching buildpending
nodes are analyzed with an intent analysis from our prior work
[10] to determine their targets (e.g., MainActivity).

C. Analysis Output

Four categories of information are produced by the static
analysis. First, the set NO of static abstractions represents the
run-time notification objects created by build calls with the
help of a wearable extender. Each (bn,nb,we) ∈ NO is a
triple of program statements: a build call site bn , a new
expression nb that creates a notification builder, and a new
expression we for a wearable extender. In the example, NO
contains no1 = (build19, Builder1, WearableExtender4)
Although here the build site has only one possible builder/ex-
tender, we have seen examples in real code where several
builders or extenders can reach the same call to build.

Second, for each no ∈ NO, the analysis determines which
calls to notify it reaches. This information can be used to de-
termine the behavior of these control-flow exit points. For ex-
ample, no1 reaches notify20. Third, for each no the analysis
provides information about the screens it could trigger on the
wearable. Any no actions ac and no pages bn corresponds to
a screen. In the example we have no1 actions buildactioni
for i ∈ {10, 14, 16} and no1 pages build6. The correspond-
ing screens are shown in Figure 2.

Actions can bring the control flow back to the hand-
held app. For any no, the analysis identifies the new
sites for Intents that define these re-entry points. Com-
bined with well-known techniques for intent analysis (e.g.,
[4], [5]), this disambiguates the control flow at notify
calls. For any combination of no actions ac, ac pending pi ,
and pi intent in , a notify call with no can be matched
with the target of intent in for the purposes of fur-
ther static and dynamic analyses. In the running exam-
ple we have buildactioni pending buildpendingj for
(i, j)∈{(10, 9), (14, 13), (16, 3)} and buildpendingj intent
Intentk for (j, k) ∈ {(9, 8), (13, 12), (3, 2)}. Thus, for each
of these three actions, the control-flow re-entry point for
notify20 can be determined by considering the correspond-
ing intent from {Intent2, Intent8, Intent12} and its tar-
get (i.e., MainActivity, RemoteMessagingReceiver, or
MarkReadReceiver).

V. TESTING

A. Coverage Criteria

Given the output of the analysis, we define several coverage
criteria for testing of AW apps. The goal of these criteria is
to ensure comprehensive execution of notification-related run-
time behavior. This behavior is implemented by the Android
platform code, across two different JVMs (one on the handheld
and another on the wearable). Thus, traditional coverage such
as statement or branch coverage of the handheld app code is
not enough to ensure that the possible variations in run-time
behavior are exercised. We propose the following coverage
goals, and provide a test coverage tool to support them.

Fig. 5. Overview of testing tool.

Notification sites. Recall that the analysis computes a set of
triples no = (bn,nb,we) to represent notification objects.
For each no, the analysis determines which calls to notify
are reached by no. Let n denote such a call site. We define
notification site coverage as follows: for each n and no that
reaches it, execute at least one test case that invokes n with a
notification built from nb, extended by we , and built at bn .

This criterion covers all static abstractions of notifications
along with every possible notify call site where they are is-
sued. We have seen applications in which multiple builders and
extenders flow to a single build site, and a single builder flows
to multiple build sites. All such scenarios are captured by this
definition. For the example in Figure 3, a test case should cover
(build19, Builder1, WearableExtender4, notify20).

Nested pages. Nested pages are optionally used by a notifi-
cation to display supplementary information. The running ex-
ample illustrates this scenario: a chat page is added only when
the condition is true at line 7 in Figure 1. To exercise the run-
time behavior related to such pages, we define the following
nested page coverage criterion: for every no pages bn , such
that no reaches a notify site n, execute at least one test case
in which no is issued by n and a page created by build site
bn is displayed on the wearable device as part of the run-
time notification. Figure 2 shows such an execution: when the
notification created by build19 reaches notify20, and then
a “swipe left” event occurs on the wearable, the nested page
created at build6 is displayed on the wearable.

Actions. We also consider action coverage: for each
no actions ac and each notify site n reached by no, at least
one test case triggers n to issue no and within the run-time
notification an action represented by ac is displayed on the
wearable. In addition, every possible static target of ac should
be re-entered in the handheld device by clicking the action
button on the wearable. For the running example, three test
cases are needed, one for each action (“Block app” is not of
interest). They should trigger the corresponding intent targets
on the handheld, i.e., perform the “Reply” action and enter
RemoteMessagingReceiver, perform the “Mark as read”
action and enter MarkReadReceiver, and perform the default
“Open on phone” action and enter MainActivity.

B. Testing Tool

Figure 5 illustrates the structure of our testing tool. In
addition to the static analysis described in the previous section,
the tool uses (1) code instrumentation to track notifications and

7

related objects, and (2) a test execution framework based on
Google’s UI Automator [18].

Static analysis. The static analysis takes an APK file as input
and applies the constraint analysis from Section IV based on
the Soot framework [17]. The output of the analysis is a set
of static notifications stored in an XML file. Each notification
is defined by the site of the build call, the site of the notify
call, and the sites of the new expressions for the notification
builder and wearable extender. We assign an integer ID for
each site using a hash code based on the corresponding Soot
statement, the signature of the surrounding method, and the
statement line number. The IDs of the four sites are used to
compute an ID for the notification. This ID is then used by our
testing framework to identify the GUI widgets on the screen
of the wearable device and to compute coverage, as described
shortly. We also assign an integer ID to every action based on
its buildaction site.

The analysis also computes a static GUI model for each
static notification. The structure of AW GUIs is described else-
where [19]. We model two key GUI components: action card
and page card. An action card corresponds to an ActionPage
object at run time and is represented by a buildaction
site in the static analysis. It contains only one action button
with some text as a title. A page card corresponds to an
instance of CardFrame at run time; in the static analysis, it is
represented by no ∈ NO for the main notification page and
bn ∈ BN for a nested page. The card displays information from
a notification. Figure 2 illustrates these components. For each
static notification no, relations actions and pages computed by
the static analysis are used to define the GUI model for no.
This GUI model is used later for coverage tracking, automated
test generation, and GUI exploration.

Instrumentation. The instrumentation tool takes as input an
APK file and the output of the static analysis. For every new
expression for notification builders and wearable extenders, the
instrumentation records the integer ID of the site and associates
it with the run-time object. We also record the ID of a call
to build and associate it with the notification created by it.
During testing, before each call to notify, the instrumentation
checks the IDs of the three sites for the run-time notification
plus the ID of the notify site. If they match the sites of a
static notification, we record that the test covers this part of the
notification-sites criterion. We also check the nested pages of
the notification. If the page’s sites match the ones of the pages
from the static notification, we prepend the static ID to the
page’s title. For the running example, the title of the chat page
will be changed from “Test Account” to “1859080457 Test
Account”. We record coverage for the nested-pages criterion
if we can observe this ID in the string title of a page from the
screen on the wearable device, during run-time test execution.

Similarly, in order to identify an action, the instrumentation
inserts the action’s static ID as a prefix of its title. We
also add the action’s ID as an extra string inside its target
Intent, and instrument the entry points of the corresponding
static targets on the handheld. If a target is an activity, we
instrument its onCreate method. If a target is a broadcast
receiver, the entry point is its onReceive method. If a target
is an intent service, the entry point is onHandleIntent; for
a normal service, the entry is onBind. One detail to notice
is that, since pending intents are registered with Android’s

1 def test():
2 # test for ’Open on phone’ action
3 setup()
4 h.send_sms(’+12345’, ’Aloha’)
5 w().swipe.left() # chat history page
6 w().swipe.left() # ’Reply’ action
7 w().swipe.left() # ’Mark as read’ action
8 w().swipe.left() # ’Open on phone’ action
9 w.click()

10 grep_hit_target_from_logcat()
11 teardown()

Fig. 6. Sample test case to trigger the “Open on phone” action.

ActivityManagerNative, we cannot simply change their
internal Intents. Our tool creates a shadow pending intent
at every new expression for a pending intent. That shadow
object acts similarly to the original one, except that its internal
Intent contains an extra string with a static action ID. We
replace the action’s target pending intent with its corresponding
shadow object so that we can fetch and check the ID of the
action that was the sender of the underlying Intent. This
check is done when control flow returns back to the entry point
of an activity, broadcast receiver, or service in the handheld
app. We record action coverage if we are able to retrieve
the action ID from the title on the wearable’s screen when
the notification is issued, and it matches the ID we get from
the Intent on the handheld after performing the action (the
Intent is available in onCreate, etc. via standard APIs.)

Testing framework. Since notifications are handled by the
Android platform on two independent devices and JVMs,
unit testing frameworks such as Robotium [20] and Espresso
[21] cannot be applied. Google’s UI Automator [18] allows
tests running on multiple devices across different processes.
However, it requires developers to write extra Java code and
configurations. To ease the burden of writing tests, we extended
UI Automator Server [22] to support AW devices. Figure 6
shows a sample test case to trigger the “Open on phone” action
in the running example; details are elided for brevity. Test
case execution communicates with a remote JSON-RPC [23]
server running on the wearable device. This server is part of
our testing framework. The framework also includes a library
containing a socket-based crawler of GUI widget hierarchies.
The library builds a socket connection to and communicates
with Android’s GUI widget server to record the current GUI
widgets on the wearable screen (including string titles). It then
parses the widget hierarchy information into abstract objects.
We use this functionality to identify the static IDs of run-
time notifications, pages, and actions, in order to check if the
execution behavior during testing meets our coverage criteria.

C. Automated Test Generation and GUI Exploration

The testing tool described above can be used by devel-
opers to write test cases and measure run-time coverage. In
addition, the tool can be extended to automatically generate
test cases that aim to achieve high coverage of actions and
pages. Given a test case (written by a developer) that issues a
notification object at a notify site, we can perform automated
exploration of the GUI model of this notification. Specifically,
for any nested page, we can automatically generate a test case
containing a sequence of “swipe left” actions that stops when
it reaches the nested page. Similarly, for any action in the
GUI model, a test case can be generated automatically to
cover it. This test case uses “swipe left” to reach the action,

8

TABLE I. CHARACTERISTICS OF STUDY SUBJECTS.

Application Classes Methods Jimple
Stmts

Time
(sec)

notify
calls

build
calls

extend
calls |NO| (no, n) (no, n, bn) (no, n, ac, t)

QuickLyric 1139 7913 121772 12.24 2 2 2 2 2 0 2
WhatsappBetaUpdater 387 1993 29832 2.41 1 1 1 1 1 0 1
QKSMS 1592 9573 140234 11.67 1 3 3 7 6 6 18
Loop 555 5225 72796 6.38 1 1 1 1 1 0 3
Silence 4898 35618 523060 68.74 2 2 3 3 3 0 7
Tasks 1357 6532 83602 7.67 1 1 1 1 1 0 3
Telegram 4363 24389 510145 28.42 1 1 2 1 1 0 2
org.toulibre.cdl 172 928 10582 1.04 1 1 1 1 1 0 2
ArcusWeather 6361 36805 485714 92.19 1 2 1 2 1 3 1
GroupMe 4699 26937 362634 40.96 1 2 2 2 1 1 5
Slack 5697 34867 418256 152.06 3 5 3 5 3 2 3
Signal 5987 41008 588386 68.91 2 2 3 3 3 0 7

and “click” to trigger it. This machinery can also be used
to perform automated exploration of the GUI structure on
the wearable device. Such automated exploration for plain
Android has been developed in prior work (e.g., [24]) for the
purposes of program understanding and systematic testing. As
far as we know, we have developed the first tool that allows
automated test generation and GUI exploration for AW apps.
The proposed approach can be easily modified to support other
testing frameworks such as Appium [25].

VI. EXPERIMENTAL EVALUATION

A. Study Subjects

We evaluated the proposed static analysis on eight open-
source AW applications from F-Droid [26]. They were selected
because they were the only F-Droid apps having the string
"WearableExtender" in their decompiled code and allowing
installation on an actual AW smartwatch. We wrote test cases
to achieve high coverage for the criteria introduced in the
previous section. We then compared the resulting run-time
notifications against the static ones reported by our analysis.

In addition to these open-source apps, we wanted to
demonstrate applicability to closed-source apps. Only APKs
are available for such apps. In the absence of source code, it
is very challenging to trigger the necessary run-time conditions
to achieve high coverage, and to reason about the (in)feasibility
of the static solution. In order to provide some initial insights,
we studied several closed-source Google Play AW apps. For
4 of them, we were able to obtain sufficient understanding of
the app to be able to write meaningful test cases and to make
high-confidence judgments on solution feasibility.

Characteristics of the study subjects are shown in Table I;
the closed-source apps are listed at the bottom of the table.
The number of classes is shown in column “Classes”. This
includes all classes in an APK except android.support
libraries. Since Android SDK packs all necessary classes of
third-party libraries into APKs, this number also includes
those classes. During the experiment, we did not observe
any notification-related operations in library classes. Jimple is
Soot’s intermediate representation; the table shows the number
of statements in this IR. Column “Time” shows the running
time of the static analysis. On average, the cost of the analysis
is around 1.5 seconds per 10K Jimple statements, on a PC
with 3.40GHz CPU and 16GB memory. Columns 6 and 7
show the number of notify and build calls with at least
one wearable extender for the notification and the builder,
respectively. Column 8 shows the number of extend calls.

TABLE II. ACHIEVED RUN-TIME COVERAGE.

Application notification
site coverage

nested page
coverage

action
coverage

QuickLyric 2/2 0 2/2
WhatsappBetaUpdater 1/1 0 1/1
QKSMS 5/6 5/6 15/18
Loop 1/1 0 3/3
Silence 3/3 0 7/7
Tasks 1/1 0 3/3
Telegram 1/1 0 2/2
org.toulibre.cdl 1/1 0 2/2
ArcusWeather 1/1 3/3 1/1
GroupMe 1/1 1/1 3/5
Slack 1/3 0/2 1/3
Signal 3/3 0 7/7

Column “|NO|” shows the size of set NO, which contains
the static abstractions of notifications. The last three columns
correspond to the coverage criteria defined in Section V-A.
Column “(no, n)” corresponds to the notification-site criterion.
Here n is a call to notify reached by no ∈ NO. In some
cases (e.g., QKSMS) the number of such pairs is smaller than
the size of NO because some of the notifications are used
as nested pages and not as parameters of notify. Column
“(no, n, bn)” corresponds to the nested-page criterion. Site bn
is a build call that creates a nested page added to no through
some wearable extender. Column “(no, n, ac, t)” corresponds
to action coverage. Here ac is an action of no and t is a
handheld app re-entry point triggered by this action.

B. Case Studies

For each application, we wrote test cases to try to achieve
complete coverage with respect to the criteria defined earlier.
The source code of the app, when available, was examined
to ensure that we have indeed achieved the greatest possible
coverage. The creation of these test cases was done both to (1)
validate the working of our testing tool, and (2) to evaluate the
precision of the static analysis, since any coverage goal that
cannot be achieved indicates analysis imprecision.

The results from these case studies are shown in Table II.
In general, very high coverage was achieved, indicating that
the static analysis solution is typically feasible at run time. For
9 of the 12 apps, perfect analysis precision was observed. Ad-
ditional observations from these studies are presented below.

QKSMS. This application is an alternative to Android’s default
messaging application. Whenever a message arrives, a notifi-
cation is issued on the wearable to inform the user. We could
not find a way to trigger one of the six static notifications. The
missing case occurs when the user receives several messages

9

from multiple senders. The processing logic for this case is
complicated and, to the best of our understanding, the code
that issues the notification is dead code.

Telegram. This is a popular chatting application, with close
to two million downloads in the Google Play store. It provides
secure point-to-point communication. However, Soot failed
to generate a valid instrumented APK file for it. Thus we
manually instrumented the code and then proceeded to write
test cases as with the other apps. This application requires
two handheld devices for testing: one for sending messages
and one for receiving messages and bridging notifications
to a wearable. We utilized UI Automator and our testing
framework to manage three devices at the same time and
achieved complete coverage.

GroupMe. This is an app for group chats and sharing. It also
needs two handheld devices for testing. There are 5 tuples
(no, n, ac, t) reported by the static analysis, but only three
of them are feasible. The reason for the infeasibility is that
a superclass BaseNotification contains code for building
and issuing notifications (both on the handheld and on the
wearable), and only one of its subclasses is related to wearable-
only notifications. The spurious targets t come from other
subclasses of BaseNotification. There are standard static
analysis techniques to handle such sources of imprecision (e.g.,
object sensitivity [8], [27]) and they can be easily integrated
with our approach.

Slack. This business app is used for team communication,
file sharing, archiving, search, cloud integration, etc. Out of
the three static pairs (no, n), only one is feasible. The other
two coverage criteria are also affected by this imprecision. We
determined that the two infeasible notifications are issued by
code that could never be executed at run time. This dead code
could be discovered by an interprocedural constant propagation
analysis. However, without such a pre-analysis, our analysis
reports the effects of the dead code as part of the static solution.

C. Summary

These studies provide initial evidence that the static anal-
ysis is precise and can be executed with practical cost. In
addition, the testing experiments validate the design and im-
plementation of the proposed testing tool. Both the analysis
and the tool advance the state of the art in analysis/testing of
AW apps, and can provide a starting point for future work on
such apps.

VII. RELATED WORK

There is a significant body of work on static analysis and
testing for Android, (e.g., [4], [5], [9]–[11], [13], [24], [28]–
[34]), but very little work exists for Android Wear.

Android Wear. Ahola [35] highlights open issues and missing
features in the AW platform. Lyons [36] provides suggestions
for the design of apps for smartwatches, using feedback from
a user study. Min et al. [37] present an exploratory investi-
gation of the battery usage of smartwatches and emphasize
that “checking smartphone notifications” is the most common
usage for smartwatches. Chauhan et al. [38] characterize
various properties (e.g., domain categories, external tracking,
information leakage) of apps for AW and other wearable

OSes. Liu and Lin [39] examine CPU usage, idle episodes,
thread-level parallelism, and microarchitectural behaviors of
AW devices. They provide evidence of execution inefficiencies
and design flaws in the AW platform. Other researchers have
considered the use of AW devices in areas such as healthcare
[40], text recognition [41], and mobile biometrics [42]. There is
no existing work on modeling the AW notification mechanism
and using this modeling in a testing tool, which is the target
of our work.

Testing and GUI exploration for plain Android. Choud-
hary et al. [43] summarize many existing testing and GUI
exploration approaches for Android apps. Dynodroid [30] uses
guided random GUI exploration. GUIRipper [31] generates
a dynamically built GUI model. MobiGUITAR [32] utilizes
an enhanced version of GUIRipper and applies test adequacy
criteria to it in order to generate test cases. A3E [24] uses GUI
exploration based on a control-flow model from static analysis.
PUMA [33] is a framework that separates the logic for explor-
ing app execution and the logic for analyzing app properties.
ACTEve [34] is a concolic testing tool which symbolically
tracks events from their generation to their handling. None of
these tools are designed for AW apps, and they cannot be used
for analysis and test coverage of AW notifications.

VIII. CONCLUSIONS AND FUTURE WORK

The popularity of wearable devices are expected to increase
dramatically over the next decade. Wearables hold the promise
of context-aware interactions based on a rich variety of sensor
information. Applications in diverse areas such as industry,
healthcare, well-being, retail, and entertainment will be de-
ployed in the future. This growing area presents an interesting
challenge for the software engineering research community.

Our work focuses on the popular Android Wear platform,
and on one of the core AW interaction mechanisms: control
flow due to notifications. We abstract the essential concepts
of the mechanism and define an analysis to model them
statically. The resulting information provides a starting point
for further client analyses. We present one such client: a testing
tool which measures run-time coverage for notification-related
entities, and also allows for automated test generation and GUI
exploration. To the best of our knowledge, this is the first work
to develop such testing features for AW apps. Our evaluation
indicates that the analysis has practical cost and high precision.

There are many open problems in this area, both for the
current AW version 1.5 and for the more sophisticated version
2.0 which will be released officially very soon. Both apps with
two APKs (one on the handheld and one on the wearable)
and apps with wearable-only APKs are expected to become
increasingly popular. Examples of interesting problems include
data synchronization between wearable and a handheld, custom
UIs on the wearable, techniques to reduce battery consumption
(e.g., using ambient mode [44]), security analysis, and support
for the future evolution of the AW platform. We expect to see
significant research advances in this area. The work presented
here is a building block for such advances.

REFERENCES

[1] Gartner, Inc., “Worldwide wearable devices sales,” Jan. 2016,
gartner.com/newsroom/id/3198018.

10

[2] “Android Wear,” developer.android.com/wear.
[3] “Building apps for wearables,” developer.android.com/

training/building-wearables.html.
[4] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and

Y. le Traon, “Effective inter-component communication mapping in
Android with Epicc,” in USENIX Security, 2013.

[5] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Com-
posite constant propagation: Application to Android inter-component
communication analysis,” in ICSE, 2015, pp. 77–88.

[6] “SCanDroid: Security Certifier for anDroid,” spruce.cs.ucr.edu/
SCanDroid/tutorial.html.

[7] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer, 2005.

[8] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts
well: Understanding object-sensitivity,” in POPL, 2011, pp. 17–30.

[9] A. Rountev and D. Yan, “Static reference analysis for GUI objects in
Android software,” in CGO, 2014, pp. 143–153.

[10] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-
flow analysis of user-driven callbacks in Android applications,” in ICSE,
2015, pp. 89–99.

[11] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev, “Static
window transition graphs for Android,” in ASE, 2015, pp. 658–668.

[12] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A
minimal core calculus for Java and GJ,” TOPLAS, vol. 23, no. 3, pp.
396–450, May 2001.

[13] D. Yan, “Program analyses for understanding the behavior and per-
formance of traditional and mobile object-oriented software,” Ph.D.
dissertation, Ohio State University, Jul. 2014.

[14] B. G. Ryder, “Dimensions of precision in reference analysis of object-
oriented programming languages,” in CC, 2003, pp. 126–137.

[15] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using
Spark,” in CC, 2003, pp. 153–169.

[16] M. Sridharan and R. Bodik, “Refinement-based context-sensitive points-
to analysis for Java,” in PLDI, 2006, pp. 387–400.

[17] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing Java bytecode using the Soot framework:
Is it feasible?” in CC, 2000, pp. 18–34.

[18] “UI Automator testing framework,” goo.gl/3VedFe.
[19] “UI patterns for Android Wear,” goo.gl/KGFykx.
[20] “Robotium testing framework for Android,” code.google.com/

p/robotium.
[21] “Espresso testing framework,” goo.gl/aVoiFf.
[22] “UI Automator server,” github.com/presto-osu/android-

uiautomator-server.
[23] “JSON-RPC,” json-rpc.org.
[24] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of Android apps,” in OOPSLA, 2013, pp. 641–660.
[25] “Appium testing framework,” appium.io.
[26] “F-Droid application market,” f-droid.org.
[27] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object

sensitivity for points-to analysis for Java,” TOSEM, vol. 14, no. 1, pp.
1–41, 2005.

[28] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in PLDI, 2014, pp. 259–269.

[29] W. Yang, M. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications,” in FASE, 2013, pp. 250–
265.

[30] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in FSE, 2013, pp. 224–234.

[31] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. Memon, “Using GUI ripping for automated testing of Android
applications,” in ASE, 2012, pp. 258–261.

[32] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta, and A. Memon,
“MobiGUITAR: Automated model-based testing of mobile apps,” IEEE
Software, pp. 53–59, 2015.

[33] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of mo-
bile apps,” in MobiSys, 2014, pp. 204–217.

[34] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in FSE, 2012, pp. 1–11.

[35] J. Ahola, “Challenges in Android Wear application development,” in
International Conference on Web Engineering, 2015, pp. 601–604.

[36] K. Lyons, “What can a dumb watch teach a smartwatch?: Informing the
design of smartwatches,” in ACM International Symposium on Wearable
Computers, 2015, pp. 3–10.

[37] C. Min, S. Kang, C. Yoo, J. Cha, S. Choi, Y. Oh, and J. Song, “Exploring
current practices for battery use and management of smartwatches,” in
ACM International Symposium on Wearable Computers, 2015, pp. 11–
18.

[38] J. Chauhan, S. Seneviratne, M. A. Kaafar, A. Mahanti, and A. Senevi-
ratne, “Characterization of early smartwatch apps,” in Workshop on
Sensing Systems and Applications Using Wrist Worn Smart Devices,
2016, pp. 1–6.

[39] R. Liu and F. X. Lin, “Understanding the characteristics of Android
Wear OS,” in MobiSys, 2016, pp. 151–164.

[40] H. Dubey, J. C. Goldberg, M. Abtahi, L. Mahler, and K. Mankodiya,
“EchoWear: Smartwatch technology for voice and speech treatments of
patients with Parkinson’s disease,” in Proceedings of the Conference on
Wireless Health, 2015, p. 15.

[41] L. Arduser, P. Bissig, P. Brandes, and R. Wattenhofer, “Recognizing
text using motion data from a smartwatch,” in Workshop on Sensing
Systems and Applications Using Wrist Worn Smart Devices, 2016, pp.
1–6.

[42] A. H. Johnston and G. M. Weiss, “Smartwatch-based biometric gait
recognition,” in International Conference on Biometrics Theory, Appli-
cations and Systems, 2015, pp. 1–6.

[43] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for Android: Are we there yet?” in ASE, 2015, pp. 429–
440.

[44] “Creating wearable apps,” developer.android.com/training/
wearables/apps/index.html.

11

