
Enabling Modular Proofs of Correctness for
Parallel Programs Using Annotated Abstract

Data Types

Alan Weide1, Paolo A. G. Sivilotti1, and Murali Sitaraman2

1 The Ohio State University, Columbus OH 43221, USA,
weide.3@osu.edu, paolo@cse.ohio-state.edu

2 Clemson University, Clemson SC 29634, USA,
murali@clemson.edu

Abstract. Parallel programs using abstract data types are notoriously
difficult to formally show correct in a modular manner because their
behavior depends upon the implementations of those types in addition
to the abstract specifications. A non-interference specification framework
and related calculus is introduced to enable the modular verification of
correctness of parallel programs using annotated abstract data types.
Under the specification framework, non-interfering statements commute.
This fact is proven and used to show the soundness of a proof rule for
fork-join parallel programs.

1 Introduction

Parallel programs are notoriously difficult to formally show correct because of
the possiblity of interference among threads. The formal verification of such
programs typically involve reasoning directly about the implementation of the
objects in use. However, complex software components in the real world are built
in a layered fashion, reusing complex “high-level” components (which themselves
are built using other high-level components). In a sequential context, verifica-
tion of the correctness of these programs typically proceeds in a modular fashion,
using the behavioral specification—and not the implementation!—of the under-
lying components. Unfortunately, such modular verification breaks down in a
concurrent context because the underlying implementation matters somewhat.
For example, it is easy to imagine two implementations of a queue—one that
becomes corrupted when multiple processes attempt to concurrently enqueue
and one that will handle it with grace—both of which respect some reasonable
(sequential) behavioral specification. Of course, only the second implementation
would be useful in a concurrent system.

A behavioral specification can be enhanced with a non-interference specifi-
cation [?,?] to capture the conditions under which it is safe to use a component
in a parallel context. The verification that an implementation meets its non-
interference specification proceeds modularly and without sacrificing abstrac-
tion. Moreover, the non-interference specification does not require modification
to the sequential behavioral specification.

2 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

In this paper, it is shown that the manner in which an implementation meets
its non-interference specification and is considered “safe” implies that the parallel
execution of non-interfering statements is equivalent to all possible sequential
orderings of the statements.

1.1 Outline

In section 2, a caluclus for effects is defined. Effects are related to programs in
section 3, and the semantics of a programming language with respect to effects
is formalized in section 4. Finally, the various results achieved by this calculus
and programming model are proved in section 5.

2 A/P Calculus

A non-interference specification identifies, for each operation on an object, un-
der what conditions various pieces of the object’s state are affected (i.e., might
have their value changed), preserved (i.e., might have their value read), or ig-
nored (i.e., are neither read nor written to) by the execution of that operation.
This section introduces a calculus to facilitate formal reasoning about these ef-
fects independent of their use in programs. Despite the apparent generality in
the calculus, effects find their primary use in reasoning about programs involving
partitioned objects, in which some pieces of each object are affected (correspond-
ing to the ‘A’ set) and others are preserved (the ‘P ’ set). (Pieces of an object
that are ignored by an effect are not in either the A or P sets of that effect.)

For example, consider the C-language program fragment in listing 2.1. The
effect of the method modifyX might be written in a non-interference specifica-
tion as “affects p.x; preserves p.y, p.z”. In the effects calculus, it would be
summarized as the pair ({p.x}, {p.y, p.z}). That is, the method modifyX might
change the value of p.x and might read the value of p.y and p.z. Of course,
objects in real-world programs are typically far more complex that the Point
struct in listing 2.1. The A/P calculus is general enough to serve as a useful rea-
soning tool both for simple structures such as Point and for complex objects
with rich abstraction of the kind used in real-world programs. This generality is
applied through the mechanisms described in sections 3 and 4.

2.1 Definitions

Definition 2.1 (Effect). An effect is a pair of sets e = (A,P).

Definition 2.2 (Target of an effect). The target of an effect e = (A,P) is
T(e) = A ∪ P .

Definition 2.3 (Projection). The projection of an effect e = (A,P) to a set
S is e|S = (A ∩ S, P ∩ S).

Modular Proofs of Correctness for Parallel Programs 3

Listing 2.1. C program fragment to illustrate a simple use of effects.

struct Point {
int x;
int y;
int z;

};

void modifyX(struct Point *p) {
p.x = p.x + p.y + p.z;

}

Definition 2.4 (Reduction). The reduction of an effect e = (A,P), denoted
R(e), is defined as follows.

R(e) = (A,P \A)

(When the need arises, we write RS(e) when we mean R(e)|S.)

Definition 2.5 (Equivalence Modulo Reduction). The relation ≡R, de-
fined as follows, is an equivalence relation:

e1 ≡R e2 ⇔ R(e1) = R(e2)

The equivalence class of effects with respect to ≡R for some effect e is de-
noted [e]R (or just [e] when R is understood). The canonical representation of
an equivalence class is the effect e within that class such that R(e) = e.

Definition 2.6 (Combined effect). The combined effect of two effects e1 =
(A1, P1) and e2 = (A2, P2), denoted e1 t e2, is defined as follows.

e1 t e2 = R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
Definition 2.7 (Common effect). The common effect of two effects e1 =
(A1, P1) and e2 = (A2, P2), denoted e1 u e2, is defined as follows.

e1 u e2 = R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
Definition 2.8 (The Is Covered By relation). The is covered by relation
v on effects e1 = (A1, P1), e2 = (A2, P2) is defined as follows.

e1 v e2 ⇔ (A1 ⊆ A2) ∧
(
T(e1) ⊆ T(e2)

)
Definition 2.9 (The Does Not Interfere With relation). The does not
interfere with relation ‡ on effects e1 = (A1, P1), e2 = (A2, P2) is defined as
follows.

e1 ‡ e2 ⇔
(
A1 ∩ T(e2) = ∅

)
∧
(
A2 ∩ T(e1) = ∅

)
Definition 2.10 (Well-formedness). An effect e = (A,P) is well-formed if
A ∩ P = ∅. e is well-formed with respect to a set S if e is well-formed and
T(e) ⊆ S.

4 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

2.2 Lemmas

Lemma 2.1. For effect e = (A,P), T
(
R(e)

)
= T(e).

Proof.

T
(
R(e)

)
= T

(
(A,P \A)

)
(def. of R)

= A ∪ (P \A) (def. of T)

= A ∪ P (appl. of ∪, \)
= T(e) (def. of T)

Lemma 2.2. For effects e, R(e) v e.

Proof. Let R(e) = (AR, PR) and e = (A,P).

AR = A ∧ T
(
R(e)

)
= T(e) (def. of R, lemma 2.1)

⇒ AR ⊆ A ∧ T
(
R(e)

)
⊆ T(e) (appl. of ⊆)

⇒ R(e) v e (def. of v)

Lemma 2.3. For effects e1 = (A1, P1), e2 = (A2, P2),(
e1 t R(e2) = e1 t e2

)
and (

e1 u R(e2) = e1 u e2

)
.

Proof.

e1 t R(e2) = R
(
(A1 ∪A2,T(e1) ∪ T(R(e2)))

)
(def. of t)

= R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
(lemma 2.1)

= e1 t e2 (def. of t)

e1 u R(e2) = R
(
(A1 ∩A2,T(e1) ∩ T(R(e2)))

)
(def. of u)

= R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
(lemma 2.1)

= e1 u e2 (def. of u)

Lemma 2.4. For effect e = (A,P), R(e) is well-formed.

Modular Proofs of Correctness for Parallel Programs 5

Proof.

A ∩ (P \A) = ∅ (appl. of \,∩)

⇒ (A,P \A) is well-formed (def. of well-formedness)

⇒ R(e) is well-formed (def. of R)

Lemma 2.5. Well-formedness is closed under |, R, t, and u.

Proof. We show each individually.

Claim. Well-formedness is closed under |. That is, for any well-formed effect
e = (A,P) and set S, e|S is well-formed.

Proof.

e|S = (A ∩ S, P ∩ S) (def. of |)
⇒ (A ∩ S) ∩ (P ∩ S) = (A ∩ P) ∩ (S ∩ S) (assoc., commut. of ∩)

⇒ (A ∩ S) ∩ (P ∩ S) = ∅ ∩ (S ∩ S) (well-formedness of e)

⇒ (A ∩ S) ∩ (P ∩ S) = ∅ (appl. of ∩)

⇒ (A ∩ S, P ∩ S) is well-formed (def. of well-formedness)

⇒ e|S is well-formed (def. of |)

�

Claim. Well-formedness is closed under R. That is, for any well-formed effect e,
R(e) is well-formed.

Proof. By lemma 2.4, the reduction of any effect (including well-formed ones) is
well-formed. Therefore, well-formedness is closed under R. �

Claim. Well-formedness is closed under t and u. That is, for any well-formed
effects e1, e2, e1 t e1 and e1 u e2 are both well-formed.

Proof. By definitions 2.6 and 2.7, e1 t e2 and e1 u e2 are each the result of
applying R to some effect. By lemma 2.4, the reduction of any effect is well-
formed. Therefore well-formedness is closed under t and u. �

Lemma 2.6. The ‡ relation is symmetric. That is, for effects e1 = (A1, P1), e2 =
(A2, P2), e1 ‡ e2 ⇔ e2 ‡ e1.

Proof.

e1 ‡ e2

⇔
(
A1 ∩ T(e2) = ∅

)
∧
(
A2 ∩ T(e1) = ∅

)
(def. of ‡)

⇔
(
A2 ∩ T(e1) = ∅

)
∧
(
A1 ∩ T(e2) = ∅

)
(commut. of ∧)

⇔ e2 ‡ e1 (def. of ‡)

6 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

Lemma 2.7. For effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3),

e1 ‡ e2 ∧ e3 v e1 ⇒ e3 ‡ e2

Proof.

e1 ‡ e2 ∧ e3 v e1

⇒ A1 ∩ T(e2) = ∅ ∧A2 ∩ T(e1) = ∅ ∧ e3 v e1 (def. of ‡)

⇒

(
A1 ∩ T(e2) = ∅ ∧A2 ∩ T(e1) = ∅ ∧

A3 ⊆ Ae1 ∧ T(e3) ⊆ T(e1)

)
(def. of v)

⇒ A3 ∩ T(e2) = ∅ ∧A2 ∩ T(e3) = ∅ (appl. of ⊆, substitution)

⇒ e3 ‡ e2 (def. of ‡)

Lemma 2.8. For effects e1 = (A1, P1), e1 = (A2, P2),

e1 v e2 ⇔ R(e1) v R(e2)

Proof. Let R(e1) = (AR1
, PR1

) and R(e2) = (AR2
, PR2

). Then by definition 2.4
and lemma 2.1, we have:

(AR1 = A1) ∧ (AR2 = A2) ∧
(
T(R(e1)) = T(e1)

)
∧
(
T(R(e2)) = T(e2)

)
.

e1 v e2

⇔ A1 ⊆ A2 ∧ T(e1) ⊆ T(e2) (def. of v)

⇔ AR1 ⊆ AR2 ∧ T(e1) ⊆ T(e2) (substitution)

⇔ AR1 ⊆ AR2 ∧ T
(
R(e1)

)
⊆ T

(
R(e2)

)
(substitution)

⇔ R(e1) v R(e2) (def. of R)

Lemma 2.9. For a function f : D → R, let F : ℘(D) → ℘(R) be defined as
F (X) = {f(x) : x ∈ X}, the element-wise application of f to X, a subset of D.
Then for all A1, P1, A2, P2 such that A1, P1, A2, P2 ⊆ D and all f : D → R for
some R, (

F (A1), F (P1)
)
‡
(
F (A2), F (P2)

)
⇒ (A1, P1) ‡ (A2, P2).

Proof. We show the contrapositive, i.e.,

¬
(
(A1, P1) ‡ (A2, P2)

)
⇒ ¬

(
(F (A1), F (P1)

)
‡
(
F (A2), F (P2))

)
.

Modular Proofs of Correctness for Parallel Programs 7

¬(
(
(A1, P1) ‡ (A2, P2)

)
⇒ ∃x : x ∈ T

(
(A1, P1)

)
∧ x ∈ A2 (def. of ‡, appl. of ¬)

⇒ ∃x : x ∈ T
(
(A1, P1)

)
∧ x ∈ A2 ∧ f(x) ∈ T

(
(F (A1), F (P1))

)
∧ f(x) ∈ F (A2)

(def. of F)

⇒ ¬
(
(F (A1), F (P1)) ‡ (F (A2), F (P2))

)
(def. of ‡)

Therefore,
(
F (A1), F (P1)

)
‡
(
F (A2), F (P2)

)
⇒
(
(A1, P1) ‡ (A2, P2)

)
.

Remark 1. The converse of the conditional in lemma 2.9 is not true because when
(A1, P1) ‡ (A2, P2) there might be some x, y such that x 6= y ∧ x ∈ A1 ∧ y ∈ A2

but f(x) = f(y), and thus that ¬
(
(F (A1), F (P1)) ‡ (F (A2), F (P2))

)
.

2.3 The A/P Lattice

Beginning in this section we adopt the following definitions, which are used for
the remainder of this paper.

– S is some set

– ES = {e : e is a well-formed effect with respect to S} (when S is understood
or irrelevant, it is left out and we refer simply to E)

– ⊥ = (∅, ∅)
– >S = (S, ∅) (when S is understood or irrelevant, it is left out and we refer

simply to >)

– LS = (ES ,t,u,⊥,>S) (when S is understood or irrelevant, it is left out and
we refer simply to L)

While we have defined L here only for well-formed effects, it could be similarly
defined for [e]R, the equivalence class of e under ≡R, and indeed that formulation
might be preferred for some applications.

Theorem 2.1 (Well-formed effects form a lattice). For all S, LS is a
bounded lattice over ES with operations t and u, least element ⊥, and greatest
element >S.

Proof. We show that (E,t,u) is a lattice, then show that ⊥ and > are its
bounds.

First, by lemma 2.4, E is closed under t and u.3

Claim. The operation t is associative.

3 The lemma actually states that the set of all well-formed effects is closed under those
operations. The proofs that T(e1 t e2) ⊆ S and that T(e1 u e2) ⊆ S for e1, e2 ∈ ES
are trivial and left as an exercise to the reader.

8 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

Fig. 2.1. The effects lattice L.

⊥

e1 u e2

e1 e2

e1 t e2

>

v

v

Proof. Given effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3):

e1 t (e2 t e3)

= e1 t R
(
(A2 ∪A3,T(e2) ∪ T(e3))

)
(def. of t)

= e1 t
(
A2 ∪A3,T(e2) ∪ T(e3)

)
(lemma 2.3)

= R
(
(A1 ∪ (A2 ∪A3),T(e1) ∪ (T(e2) ∪ T(e3)))

)
(def. of t)

= R
(
((A1 ∪A2) ∪A3, (T(e1) ∪ T(e2)) ∪ T(e3))

)
(assoc. of ∪)

=
(
A1 ∪A2,T(e1) ∪ T(e2)

)
t e3 (def. of t)

= R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
t e3 (lemma 2.3)

= (e1 t e2) t e3 (def. of t)

�

Claim. The operation t is commutative.

Proof. Given effects e1 = (A1, P1), e2 = (A2, P2):

e1 t e2 = R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
(def. of t)

= R
(
(A2 ∪A1,T(e2) ∪ T(e1))

)
(commut. of ∪)

= e2 t e1 (def. of t)

�

Claim. The operation u is associative.

Modular Proofs of Correctness for Parallel Programs 9

Proof. Given effects e1 = (A1, P1), e2 = (A2, P2), e3 = (A3, P3):

e1 u (e2 u e3)

= e1 u R
(
(A2 ∩A3,T(e2) ∩ T(e3))

)
(def. of u)

= e1 u
(
A2 ∩A3,T(e2) ∩ T(e3)

)
(lemma 2.3)

= R
(
(A1 ∩ (A2 ∩A3),T(e1) ∩ (T(e2) ∩ T(e3)))

)
(def. of u)

= R
(
((A1 ∩A2) ∩A3, (T(e1) ∩ T(e2)) ∩ T(e3))

)
(assoc. of ∩)

=
(
A1 ∩A2,T(e1) ∩ T(e2)

)
u e3 (def. of u)

= R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
u e3 (lemma 2.3)

= (e1 u e2) u e3 (def. of u)

�

Claim. The operation u is commutative.

Proof. Given effects e1 = (A1, P1), e2 = (A2, P2):

e1 u e2 = R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
(def. of u)

= R
(
(A2 ∩A1,T(e2) ∩ T(e1))

)
(commut. of ∩)

= e2 u e1 (def. of u)

�

Claim. (E,t,u) is a lattice.

Proof. The operations t and u are associative and commutative. For the opera-
tions to form a lattice, they must additionally satisfy the absorption properties
for effects e1 = (A1, P1) and e2 = (A2, P2) in E:

1. e1 t (e1 u e2) = e1

e1 t (e1 u e2)

= e1 t R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
(def. of u)

= e1 t
(
A1 ∩A2,T(e1) ∩ T(e2)

)
(lemma 2.3)

= R
(
(A1 ∪ (A1 ∩A2),T(e1) ∪ (T(e1) ∩ T(e2)))

)
(def. of t)

= R
(
(A1,T(e1))

)
(appl. of ∩,∪)

= R
(
(A1, A1 ∪ P1)

)
(def. of T)

= (A1, (A1 ∪ P1) \A1) (def. of R)

=
(
A1, (A1 \A1) ∪ (P1 \A1)

)
(distrib. of \)

= (A1, P1 \A1) (appl. of \,∪)

= (A1, P1) (def. of well-formedness, appl. of \)
= e1 (def. of effect)

10 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

2. e1 u (e1 t e2) = e1

e1 u (e1 t e2)

= e1 u R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
(def. of t)

= e1 u
(
A1 ∪A2,T(e1) ∪ T(e2)

)
(lemma 2.3)

= R
(
(A1 ∩ (A1 ∪A2),T(e1) ∩ (T(e1) ∪ T(e2)))

)
(def. of u)

= R
(
(A1,T(e1))

)
(appl. of ∩,∪)

= R
(
(A1, A1 ∪ P1)

)
(def. of T)

= (A1, (A1 ∪ P1) \A1) (def. of R)

=
(
A1, (A1 \A1) ∪ (P1 \A1)

)
(distrib. of \)

= (A1, P1 \A1) (appl. of \,∪)

= (A1, P1) (def. of well-formedness, appl. of \)
= e1 (def. of effect)

�

Claim. The effect ⊥ = (∅, ∅) is the identity of t. That is, ∀e ∈ E : e t ⊥ = e.

Proof. ⊥ ∈ E because ∅ ∩ ∅ = ∅ (so ⊥ is well-formed) and ∅ ∪ ∅ ⊆ S (so
T(⊥) ⊆ S). Given effect e = (A,P) s.t. e ∈ E,

e t ⊥ = R
(
(A ∪ ∅,T(e) ∪ T(⊥))

)
(def. of t)

= R
(
(A ∪ ∅,T(e) ∪ ∅)

)
(def. of T)

= R
(
(A,T(e))

)
(identity of ∪)

= (A,T(e) \A) (def. of R)

= (A, (A ∪ P) \A) (def. of T)

=
(
A, (A \A) ∪ (P \A)

)
(distrib. of \)

=
(
A, ∅ ∪ (P \A)

)
(appl. of \)

= (A,P \A) (identity of ∪)

= (A,P) (def. of well-formedness, appl. of \)
= e (def. of effect)

�

Claim. The effect > = (S, ∅) is the identity of u. That is, ∀e ∈ E : e u > = e.

Modular Proofs of Correctness for Parallel Programs 11

Proof. > ∈ E because S ∩ ∅ = ∅ (so > is well-formed) and S ∪ ∅ ⊆ S (so
T(>) ⊆ S). Given effect e = (A,P) s.t. e ∈ E,

e u > = R
(
(A ∩ S,T(e) ∩ T(>))

)
(def. of u)

= R
(
(A ∩ S,T(e) ∩ S)

)
(def. of >)

= R
(
(A,T(e))

)
(appl. of ∩)

= (A,T(e) \A) (def. of R)

= (A, (A ∪ P) \A) (def. of T)

=
(
A, (A \A) ∪ (P \A)

)
(distrib. of \)

=
(
A, ∅ ∪ (P \A)

)
(appl. of \)

= (A,P \A) (identity of ∪)

= (A,P) (def. of well-formedness, appl. of \)
= e (def. of effect)

�

Therefore, LS = (ES ,t,u,⊥,>) is a bounded lattice.

Theorem 2.2 (Ordering on L). For all S, v is a partial order induced by
LS.

Proof. To show that v orders LS for any S, it suffices to show that

∀e1, e2 : e1 ∈ ES ∧ e2 ∈ ES : e1 v e2 ⇔ e1 t e2 = e2.

⇒

e1 v e2 ⇒
e1 t e2 = R

(
(A1 ∪A2,T(e1) ∪ T(e2))

)
(def. of t)

= R
(
(A2,T(e2))

)
(def. of v, appl. of ∪)

= R
(
(A2, A2 ∪ P2)

)
(def. of T)

= (A2, (A2 ∪ P2) \A2) (def. of R)

=
(
A2, (A2 \A2) ∪ (P2 \A2)

)
(distrib. of \)

=
(
A2, ∅ ∪ (P2 \A2)

)
(appl. of \)

= (A2, P2 \A2) (identity of ∪)

= (A2, P2) (def. of well-formedness, appl. of \)
= e2 (def. of effect)

12 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

⇐

e1 t e2 = e2

⇒ R
(
(A1 ∪A2,T(e1) ∪ T(e2))

)
= e2 (def. of t, effect)

⇒
(
A1 ∪A2, (T(e1) ∪ T(e2)) \ (A1 ∪A2)

)
= e2 (lemma 2.1)

⇒ A1 ∪A2 = A2 ∧
(
T(e1) ∪ T(e2)

)
\ (A1 ∪A2) = P2 (def. of effect)

⇒ A1 ∪A2 = A2 ∧
(
(A1 ∪ P1) ∪ (A2 ∪ P2)

)
\ (A1 ∪A2) = P2

(def. of T)

⇒ A1 ∪A2 = A2 ∧
(
(A1 ∪A2) ∪ (P1 ∪ P2)

)
\ (A1 ∪A2) = P2

(assoc., commut. of ∪)

⇒ A1 ∪A2 = A2 ∧A2 ∪ (P1 ∪ P2) \A2 = P2 (substitution)

⇒ A1 ⊆ A2 ∧A2 ∪ (P1 ∪ P2) \A2 = P2 (appl. of ∪)

⇒ A1 ⊆ A2 ∧ P1 ∪ P2 = P2 (appl. of \)
⇒ A1 ⊆ A2 ∧ P1 ⊆ P2 (appl. of ∪)

⇒ A1 ⊆ A2 ∧ (A1 ∪ P1) ⊆ (A2 ∪ P2) (appl. of ∪)

⇒ A1 ⊆ A2 ∧ T(e1) ⊆ T(e2) (def. of T)

⇒ e1 v e2 (def. of v)

Theorem 2.3 (L is distributive). For all well-formed effects e1 = (A1, P1), e2 =
(A2, P2), e3 = (A3, P3),

e1 u (e2 t e3) = (e1 u e2) t (e1 u e3)

Proof.

e1 u (e2 t e3) = e1 u R
(
(A2 ∪A3,T(e2) ∪ T(e3))

)
(def. of t)

= e1 u
(
A2 ∪A3,T(e2) ∪ T(e3)

)
(lemma 2.3)

= R
(
(A1 ∩ (A2 ∪A3),T(e1) ∩ (T(e2) ∪ T(e3)))

)
(def. of u)

= R
(
((A1 ∩A2) ∪ (A1 ∩A3), (T(e1) ∩ T(e2)) ∪ (T(e1) ∩ T(e3)))

)
(dist. of ∩)

=
(
A1 ∩A2,T(e1) ∩ T(e2)

)
t
(
A1 ∩A3,T(e1) ∩ T(e3)

)
(def. of t)

= R
(
(A1 ∩A2,T(e1) ∩ T(e2))

)
t R

(
(A1 ∩A3,T(e1) ∩ T(e3))

)
(lemma 2.3)

= (e1 u e2) t (e1 u e3) (def. of u)

3 Understanding Effects in Context

On their own, effects are not particularly interesting. However, when combined
with a formal description of what it means to be a program they enable us
to prove several non-trivial properties of our programs, such as the fact that
statements with non-interfering effects commute (section 5).

Modular Proofs of Correctness for Parallel Programs 13

Notation While most of the notation used here is standard, there are a few
notable exceptions:

– The ∈ (“is element of”) relation is overloaded to be meaningful for sequences
as well as sets, in the obvious way.

– Expressions such as x.T refer to the component of tuple x named T in the
definition of x.

– A specific piece of a partition of an object is denoted with @, e.g., x@a refers
to the element of P(x) named a.

– The notation [x : T] is taken to mean “the type associated with object x is
T ,” i.e., x.T = T .

– A parenthesized zero-subscript such as in σ(0) is taken to mean “with every
occurence of a variable x replaced with x0”.

– [seq1 → seq2] is taken to mean “with each occurence of a variable in seq1

replaced with the corresponding variable in seq2”.
– 〈a1, a2, . . . 〉 denotes a sequence, and ◦ is sequence concatenation.

3.1 Definitions

Definition 3.1 (Object). An object x = (T,R) is a tuple consisting of a type
T and a realization R.

Definition 3.2 (Type). A type T = (V, Is Init,Op) is a tuple consisting of
a (possibly infinite) set of values V , predicate Is Init, and a sequence Op of
operation contracts.

Definition 3.3 (State). A state for a universe of objects X is a function
σ : X →

(⋃
T,R : (T,R) ∈ X : T.V

)
such that each object x = (T,R) has a

value σ(x) ∈ T.V .

Definition 3.4 (State Space). The state space σ̂(X) for a set or sequence
of objects X is the set of all possible states on the objects in X.

Definition 3.5 (Partition). A partition over a set or sequence of objects X
is a function PX from X to nonempty finite sets. (The universe of objects X is
usually left implicitly-defined and we write P.)

Definition 3.6 (Collective partition). The collective partition P̂(X) of a set
or sequence of objects X is

P̂(X) =
⋃
x : x ∈ X : P(x).

Definition 3.7 (Operation contract). An operation contract o = (i, π, pre, post , S)
is a tuple consisting of an identifier i, a sequence of parameters (i.e., objects)
π, a precondition predicate pre, a postcondition predicate post, and a specified
effect S.

Definition 3.8 (Specified effect). For an operation contract o = (i, π, pre, post , S),

the specified effect is a function S : σ̂(π)→
{

(A,P) : T
(
(A,P)

)
⊆ P̂(π)

}
.

14 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

Definition 3.9 (Realization). The realization of object x = (T,R) is a tu-
ple R = (B,F, I, C, I) of a sequence B of operation bodies (i.e., sequences of
program statements), a set F of fields (i.e., objects), a representation invariant
I : σ̂(F)→ {true, false}, an abstraction relation C ⊆ σ̂(F)×T.V , and a function

I : σ̂(F)× P̂(F)→ P(x).

Definition 3.10 (Actual effect). The actual effect of an operation body b
with parameters π in realization R = (B,F, I, C, I) for some σ ∈ σ̂(π), denoted
Aσ(b), is the combined effect of each statement in b that is executed when b starts
with its parameters having the values in σ. Details of its structure are below, in
section 4.

Definition 3.11 (The Implements relation). An operation body b imple-
ments an operation contract o = (i, π, pre, post , S), denoted b 7→ o, if

∀σ, σ′ : σ
b−→ σ′ ⇒ σ

o(π)−−−→ σ′

A realization R = (B,F, I, C, I) implements a type T = (V, v0, O), denoted
R 7→ T , if

∀i : 0 ≤ i < |O| : Bi 7→ Oi.

Definition 3.12 (The Respects relation). An operation body b respects an
operation contract o = (i, π, pre, post , S), denoted b� o, if

∀σ : σ ` pre : Aσ(b) v S(σ).

A realization R = (B,F, I, C, I) respects a type T = (V, v0, O), denoted R�
T , if

∀i : 0 ≤ i < |O| : Bi � Oi.

Definition 3.13 (Validity). An operation body b is valid for an operation
contract o if b 7→ o ∧ b� o.

A realization R is valid for a type T if every operation body is valid for the
corresponding contract in T .

3.2 Well-Formedness Conditions

Definition 3.14 (Well-formedness of specified effects). A specified effect
S is well-formed if

(
∀σ : S(σ) is well-formed

)
. S is well-formed with respect to

a set T if S is well-formed and
(
∀σ : T(S(σ)) ⊆ T

)
.

Definition 3.15 (Well-formedness of operation contracts). An operation
contract o = (i, π, pre, post , S) is well-formed if:

1. Every identifier in π is unique
2. Every free variable in pre is in π
3. Every free variable in post is of the form x or x0 where x is in π
4. S is well-formed with respect to P̂(π)

Modular Proofs of Correctness for Parallel Programs 15

Definition 3.16 (Well-formedness of types). A type T = (V,O) is well-
formed if each contract in O is well-formed.

Definition 3.17 (Well-formedness of realizations). A realization R =
(B,F, I, C, I) is well-formed with respect to a type T = (V,O) if R 7→ T and
R� T .

Definition 3.18 (Well-formedness of objects). An object x = (T,R) is
well-formed if T is well-formed and R is well-formed with respect to T .

Hereafter, we are concerned only with well-formed objects and realizations.

4 Programs

A program consists of a sequence of statements. Each statement is either a
variable declaration, a control structure (e.g., a conditional statement or a loop),
or an operation call that has some number of arguments that correspond to that
operation’s parameters. Each statement has a behavior and an effect. For an
operation call, the behavior of the statement is some relation on the values of
the arguments, derived from the behavioral specification (e.g., pre- and post-
conditions). Behavioral specifications and verification are discussed at length in
the literature [?]; we assume that there a mechanism through which we can
reason about a behavioral specification, that is, a definition of correctness and a
formal semantics. Effects are derived from a non-interference specification (part
of an operation contract) and are manipulated via the A/P Calculus introduced
in section 2. An operation is implemented by an operation body, a sequence of
statements involving the parameters of the operation.

4.1 The Language

We define a simple programming language (and its semantics with respect to
effects) that will enable us to compute the actual effect of an operation body
under an assignment of the operation’s parameters, the grammar for which is in
fig. 4.1.

It is important to note that this language is one possible programming lan-
guage the implements the programming model from section 4. There is nothing
in this work that fundamentally requires this particular language, although se-
mantics are—in this paper—defined concretely in its terms.

One key restriction placed on the structure of programs in a language that
implements the programming model from section 4 (beyond the usual ones about
scoping, typing, etc.) is that an 〈id-list〉 must consist of unique 〈id〉s. This re-
striction is left implicit in the inference rules to improve readability.

16 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

Fig. 4.1. Context-free grammar for our programming language.

〈body〉 ::= operation 〈op-name〉(〈id-list〉): 〈stmt〉 end Operation Body

〈id-list〉 ::= 〈id〉, 〈id-list〉 Identifier List
| 〈id〉

〈stmt〉 ::= ε Empty Statement
| 〈simp-stmt〉; Simple Statement
| 〈stmt〉1 〈stmt〉2 Sequential Composition
| if Read(〈id〉) then 〈stmt〉1 else 〈stmt〉2 end If Statement
| while 〈id〉 do 〈stmt〉 end While Statement
| cobegin 〈par-block〉 end Cobegin Statement

〈simp-stmt〉 ::= 〈type-id〉 〈id〉 Variable Declaration
| 〈id〉1 :=: 〈id〉2 Swap
| 〈op-call〉

〈op-call〉 ::= 〈op-name〉 (〈id-list〉) Operation Call

〈par-block〉 ::= 〈op-call〉 ‖ 〈par-block〉 Parallel Block
| 〈op-call〉

4.2 Parameter Passing and Aliases

Our language, by design, does not premit aliases in the usual sense and parameter
passing in the language is, strictly speaking, by reference. However, parameter
passing by reference might be said to introduce an alias (i.e., between the argu-
ment and the formal parameter) even though the two names are not in scope at
the same time. In sequential programs, this cannot introduce unsoundness to rea-
soning with value semantics. Unsoundness can arise, however, when concurrency
is introduced via a cobegin statement in which several parallel operation calls
share an argument. If several parallel operation calls attempt to mutate the same
object, it could produce an inconsistent state (i.e., one that does not satisfy the
representation invariant of that object). A consequence of the facts proven below
in section 5 is that given pairwise non-interference between the 〈op-call〉s in a
〈par-block〉, this sharing does not introduce any nondeterminism so the value of
an object is always well-defined even in the presence of such data sharing among
threads.

It is because of this tension between reasoning about sequential and concur-
rent programs that the language has two conceptual parameter passing mecha-
nisms. Shared arguments to multiple parallel operation calls are reasoned about
using pass-by-reference semantics, while repeated arguments within a single op-
eration call are reasoned about using pass-by-swapping semantics (although such
repeated arguments should be avoided). Under pass-by-swapping, each argu-
ment is swapped into the corresponding formal parameter at the point of the
call—leaving the argument with an initial value for its type—and that formal

Modular Proofs of Correctness for Parallel Programs 17

parameter is swapped back to the argument at the end of the operation. Such
a reasoning “shortcut” guarantees that in a sequential program there is never
a time at which there are two names for the same object—even names that
are not simultaneously in scope. It also sidesteps the well-known repeated argu-
ments problem [?] because it provides for well-defined semantics when the same
argument is provided several times to the same operation call.4

While alias freedom may seem like a too-restrictive condition to place on pro-
grams, it has been shown that real-world software can be built entirely without
aliases [?], and when they are absolutely necessary aliases may be dealt with
as a special case [?]. Several popular modern programming languages, in fact,
have mechanisms to be alias-free by default [?,?], and require the program to
put in extra work to introduce aliases. In our programming model, the alias-free
restriction manifests in the following axiom.

Axiom 1 (Alias Freedom). For any two distinct objects x, y in scope, P(x) ∩
P(y) = ∅.

4.3 Primitive Operations

Without additional machinery, programs in the model of section 4 have no
lowest-level implementation because everything is implemented in terms of some-
thing else. Therefore, it is necessary to ground these programs with primitive
operations that do not themselves have operation bodies. Each primitive oper-
ation is atomic: it occurs in one “step” of execution and it operates on entire
objects rather than pieces of objects. A primitive operation in any language that
implements our programming model is a refinement of the contract below for
Prim.

i : Prim,

π : πA ◦ πP ,
pre : true,

post :

(
∀x :

{
∃f : x = f(x0) x ∈ πA
x = x0 x ∈ πP

)
,

S(σ) :
(
P̂(πA), P̂(πP)

)

(Prim)

4.4 Possible Primitive Operations

As we use a specific language for this paper, we additionally propose several pos-
sible primitive operations that we use in the language of fig. 4.1. These operations
are Init and Swap (both refinements of Prim).

4 In particular, the first time an argument appears, its value is swapped into the
corresponding formal parameter. Remaining occurences are left with an initial value.

18 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

The Init Operation The first primitive operation in our language is the Init
operation. Its contract is below.

i : Init,

π : 〈T, x〉,
pre : true,

post : T.Is Init(x),

S(σ) :
(
P(x), ∅

)

 (Init)

The Init operation sets the value of its argument to the initial value for its
type. The Init operation is used implicitly in variable declaration statements
in our language; the argument v is equal to v0 in the type T provided as part of
that statement.

The Swap Operation The other primitive operation in the language is the
Swap operation, with the following contract.

i : Swap,

π : 〈x, y〉,
pre : true,

post : (x = y0 ∧ y = x0),

S(σ) :
(
P(x) ∪ P(y), ∅

)

 (Swap)

The Swap operation is used implicitly by the :=: operator in the language.

Example: Implementing a Constant A constant can be implemented within
the language by defining a new type for each value one wishes to use. For ex-
ample, the integral constant 42 is implemented by the type C42 (4.4.1); it is
instantiated by a statement such as “C42 FORTY TWO;”.

C42 =
(
{42}, 42, 〈〉

)
(4.4.1)

Example: Implementing Bit Using the primitive operations (Swap) and
(Init), one could implement any other component. For example, it is possible
to implement a single bit that provides two operations (Set and Unset, defined
below) using the primitive operations in the language.5 Objects of type Bit
have a singleton partition, that is, ∀b : b.T = Bit : P(b) = {b}.

Bit =
(
{true, false}, false, 〈Set, Unset〉

)
(4.4.2)

5 The specifics of the implementation of Bit are left as an exercise to the reader.

Modular Proofs of Correctness for Parallel Programs 19

i : Set,

π : 〈b〉,
pre : [b : Bit],

post : b,

S(σ) :
(
{b}, ∅

)

 (Set)

i : Unset,

π : 〈b〉,
pre : [b : Bit],

post : ¬b,
S(σ) :

(
{b}, ∅

)

 (Unset)

Observe that by using objects of type Bit, it is possible to implement a func-
tionally complete set of logical operators (e.g., by implementing NOR, denoted
by ↓), and therefore to implement a computer. For example, the operation body
in listing 4.1 is valid for the operation contract (Nor).

i : Nor,

π : 〈a, b〉,
pre :

(
[a : Bit] ∧ [b : Bit]

)
,

post :
(
a = a0 ↓ b0 ∧ b = b0

)
,

S(σ) :
(
{a}, {b}

)

 (Nor)

Listing 4.1. Valid operation body for (Nor).

operation Nor(a, b) :
if a then

Unset(a);
else

if b then
Unset(a);

else
Set(a);

end
end

end

4.5 Bheavioral Semantics

In this section, we formalize the semantics of the language presented in fig. 4.1. To
reiterate, the language is just one possible implementation of the programming

20 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

model presented in section 4. The behavior of a statement s is notated with
s−→,

a (non-total) relation between states defined by post(s). The domain of
s−→ is

restricted by pre(s)—that is, σ
s−→ σ′ is only defined when σ ` pre(s). For an

operation call, pre(s) and post(s) are equal to the pre and post predicates in the
contract for the operation.

σ
s−→ σ′ ⇔

(
σ ` pre(s) ∧ σ(0), σ

′ ` post(s)
)

(4.5.1)

Frame Rule There is an enormous body of work on formalizing the semantics
of programming languages, so most of the rules below (4.5.3–12) are not too
interesting. One deviation from normal semantics we make for statements in
our language is the formulation of the frame rule. Typically, a frame rule is
formulated in terms of variables or objects; here it is defined in terms of partitions
and effects.

Frame Rule

σ
s−→ σ′ Aσ(s).A ∩ P(x) = ∅

σ(x) = σ′(x)
(4.5.2)

The rule for sequential composition (4.5.8) is slightly awkward because it
must account for the possiblilty of relational behavior. The awkwardness arises
from the decision to formulate the semantics in terms of state transitions rather
than predicates. Moreover, the semantics of 〈par-block〉 in (4.5.12) is perhaps
surprising. The parallel execution of two statements is modeled as an arbi-
trary interleaving of the constituent instructions in the implementations of those
statements (e.g., operation bodies). Informally, the semantics rule for 〈par-block〉
states that whenever the operation calls in 〈par-block〉 are non-interfering, if the
precondition of any permutation of the calls in 〈par-block〉 is satisfied by state
σ then the resultant state σ′ satisfies the postcondition of every permutation
of the calls in 〈par-block〉.6 The soundness of this rule is a consequence of the
theorems proved in section 5.

The “context” or “environment” for the rules below is provided as (X,M),
a symbol table consisting of X, the objects in scope, and M , the operations in
scope. The context is changed by (4.5.5), in which X grows to X ′ (in the other
rules X = X ′). Finally, σ ∈ σ̂(X) and σ′ ∈ σ̂(X ′).

Operation Body

b = operation op(ids): s end σ ` pre σ
s−→ σ′

σ
b−→ σ′

(4.5.3)

Semantics of ε

σ
ε−→ σ

Semantics of Variable Declaration
σ = σ′ �X X ∪ {x} = X ′ [x : T] σ′(x) = T.v0

σ
T x;−−−→ σ′

6 Strictly speaking, the rule as written only considers permutations where 〈op-call〉 is
the first or last call in the sequence.

Modular Proofs of Correctness for Parallel Programs 21

(4.5.4)

(4.5.5)

Semantics of Swap
σ = σ′[〈x, y〉 → 〈y, x〉]

σ
x:=:y−−−→ σ′

(4.5.6)

Semantics of Operation Call(
op, π, pre, post , S

)
∈M σ ` pre[π → ids] σ(0), σ

′ ` post [π → ids]

σ
op(ids);−−−−−→ σ′

(4.5.7)

Sequential Composition

∀σ′ : σ
s1;−−→ σ′ : σ′ ` pre(s2) ∀σ′ : σ′

s2;−−→ σ′′ : σ(0), σ
′ ` post(s1)

σ
s1;s2;−−−→ σ′′

(4.5.8)

If Statement

σ(x)⇒ σ
s1;−−→ σ′ ¬σ(x)⇒ σ

s2;−−→ σ′

σ
if x then s1 else s2 end;−−−−−−−−−−−−−−−−→ σ′

(4.5.9)

While Statement

σ(x)⇒ σ
s1; while x do s1 end;−−−−−−−−−−−−−−→ σ′ ¬σ(x)⇒ σ

ε−→ σ′

σ
while x do s1 end;−−−−−−−−−−−−→ σ′

(4.5.10)

Semantics of Cobegin

σ
par−−→ σ′

σ
cobegin par end;−−−−−−−−−−−→ σ′

Semantics of Parallel Block
Aσ(op) ‡Aσ(par)

σ `
(
pre(op; par ;) ∨ pre(par ; op;)

)
σ(0), σ

′ `
(
post(op; par ;) ∧ post(par ; op;)

)
σ

op‖par−−−−→ σ′

(4.5.11)

(4.5.12)

4.6 Effect Semantics

We define the actual effect of a statement (Aσ(s)) separately for each of the
various kinds of statements in the language. The determination of the actual
effect of a statement must be done in tandem with the determination of the
behavior of the that statement: the actual effect depends on the values of the
objects, as derived from the behavioral semantics as in section 4.5.

It is frequently useful to apply the non-interference correspondence, I, of a
realization R = (B,F, I, C, I) to an effect e (rather than to a single piece of a

partition). For this purpose we define the related function Î : σ̂(F)× E → E as
follows, where E = {e : e is a well-formed effect} (as defined in section 2.3).

Î(σ, e) =

(
{I(σ, p) : p ∈ e|

P̂(F).A}, {I(σ, p) : p ∈ e|
P̂(F).P}

)
t(

{p : p ∈ (e.A \ P̂(F))}, {p : p ∈ (e.P \ P̂(F))}
)

22 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

The actual effect of an operation body is defined in rule (4.6.1) below. For that
rule, realization R = (B,F, I, C, I) is well-formed with respect to a specification
T = (V,O), operation contract o = (i, π, pre, post , S) is such that o ∈ O, and
σ ∈ σ̂(π).

The defintions of the actual effect for the other kinds of statements and
expressions are in rules (4.6.2–10) below. For each rule below, we are given
S = (X,M) and σ ∈ σ̂(X) (as in section 4.5).

– b = operation op(ids): s end

Aσ(b) = Î
(
σ,Aσ(s)

)
|
P̂(ids) (4.6.1)

– s = ε

Aσ(s) = ⊥ (4.6.2)

– s = T x;

Aσ(s) =
(
P(x), ∅

)
(4.6.3)

– s = x :=: y;

Aσ(s) =
(
P(x) ∪ P(y), ∅

)
(4.6.4)

– s = op(ids) where (op, π, pre, post , S) is the well-formed contract of some
operation.

Aσ
(
s
)

= S(σ[ids → π])[π → ids] (4.6.5)

– s = s1; s2

Aσ(s) = Aσ(s1) t
(⊔

σ′ : σ
s1−→ σ′ : Aσ′(s2)

)
(4.6.6)

– s = if x then s1 else s2 end

Aσ(s) =
(
∅,P(x)

)
t

{
Aσ(s1)|

P̂(X) σ(x)

Aσ(s2)|
P̂(X) ¬σ(x)

(4.6.7)

– s = while x do s1 end

Aσ(s) =
(
∅,P(x)

)
t

{
Aσ(s1; s)|

P̂(X) σ(x)

⊥ ¬σ(x)
(4.6.8)

– s = cobegin par end

Aσ(s) = Aσ(par) (4.6.9)

– s = op‖par

Aσ(s) = Aσ(op) tAσ(par) (4.6.10)

Modular Proofs of Correctness for Parallel Programs 23

Syntactic Effect It is occasionally useful to determine the effect of a statement
on a conservative basis, without regard for the initial state. For these cases we
define the syntactic effect, denoted A(s), so named because it is syntactically
derivable from the program text. Formally,

A(s) =
⊔
σ : Aσ(s).

The syntactic effect is always more conservative than the actual effect, and so can
be used in place of the actual effect without compromising soundness (although
there would be a penalty to completeness). That is,

∀s, σ : Aσ(s) v A(s).

The syntactic effect is closely related to the theoretical underpinnings of other
concurrency-focused programming languages such as DPJ [?] and ParaSail [?];
the effects calculus in section 2 and reasoning-focused language in section 4 helps
to generalize those other results.

5 Results

Through the combintation of the effects calculus of section 2 and the program-
ming model and language of section 4 and section 4.1, a variety of interesting
results can be achieved. These results have implications for reasoning about and
verifiying the correctness of parallel programs in languages that implement the
model described above (see section 5.1). They are enumerated and proved here
as a sequence of lemmas a theorems.

The first lemma, lemma 5.1, states that any object not mentioned in a state-
ment is not in the target of the actual effect of that statement; by the frame rule,
then, any object not mentioned in a statement does not have its value changed
by that statement. It helps us apply the frame rule even to objects that are not
mentioned in a statement.

Lemma 5.1. For any statement s, state σ, and object x not mentioned in s,
T
(
Aσ(s)

)
∩ P(x) = ∅.

Proof. We proceed by induction on s.

Base Cases

– s = ε.

By (4.6.2), T
(
Aσ(s)

)
= ∅ and the lemma is trivially true.

– s = T y.

By (4.6.3), T(
(
Aσ(s)

)
= P(y). If x is not mentioned in s, then x 6= y.

Therefore, T
(
Aσ(s)

)
∩ P(x) = ∅.

24 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

– s = op(ids).

By well-formedness definitions 3.14 and 3.15 and (4.6.5), if x is not mentioned
in s then T

(
Aσ(s)

)
∩ P(x) = ∅, so the lemma holds for s.

Inductive Step

For induction, we assume that s1 and s2 are such that x does not appear in
either statement (and thus have the property that T

(
Aσ(s1)

)
∩ P(x) = ∅ and

T
(
Aσ(s2)

)
∩ P(x) = ∅).

– s = s1; s2.

By (4.6.6), T
(
Aσ(s)

)
= T

(
Aσ(s1)

)
∪T
(
Aσ(s2)

)
. By our inductive hypothesis,

T
(
Aσ(s1)

)
∩ P(x) = ∅ and T

(
Aσ(s2)

)
∩ P(x) = ∅. Thus, it follows that

T
(
Aσ(s)

)
∩ P(x) = ∅.

– s = if y then s1 else s2 end.

By (4.6.7), either T
(
Aσ(s)

)
= P(y) ∪ T

(
Aσ(s1)

)
or T

(
Aσ(s)

)
= P(y) ∪

T
(
Aσ(s2)

)
. If x is not mentioned in x, then y 6= x; by our inductive hypoth-

esis T
(
Aσ(s1)

)
∩ P(x) = ∅ and T

(
Aσ(s2)

)
∩ P(x) = ∅. Thus, it follows that

T
(
Aσ(s)

)
∩ P(x) = ∅.

– s = while y do s1 end.

By (4.6.8), T
(
Aσ(s)

)
= P(y) ∪ T

(
Aσ(s1)

)
. If x is not mentioned in s, then

x 6= y; by our inductive hypothesis T
(
Aσ(s1)

)
∩ P(x) = ∅. hus, it follows

that T
(
Aσ(s)

)
∩ P(x) = ∅.

– s = cobegin op‖par end.

By (4.6.10), T
(
Aσ(s)

)
= T

(
Aσ(op)

)
∪ T

(
Aσ(par)

)
. Sincy by assumption

T
(
Aσ(op)

)
∩P(x) = ∅ and T

(
Aσ(par)

)
∩P(x) = ∅, it follows that T

(
Aσ(s)

)
∩

P(x) = ∅.

The second lemma, 5.2, implies that statements that share no objects com-
mute. This result is helpful in reasoning about simple parallel programs (some-
times called “embarassingly parallel”) in which there is no shared data among
the parallel threads. It serves as a proof of concept that the reasoning framework
introduced here is not too far-fetched.

Let X̂σ(s) =
{
x : P(x)∩T(Aσ(s)) 6= ∅

}
(i.e., the objects mentioned in s in a

statement that is executed when s begins in state σ).7 X̄σ(s) is its complement.

7 X̂(s) (without an identifying state) is defined as
{
x : P(x) ∩ T(A(s)) 6= ∅

}
, the set

of objects mentioned anywhere in s.

Modular Proofs of Correctness for Parallel Programs 25

Lemma 5.2. For all statements s and states σ1, σ′1, σ2, and σ′2,
(
σ1 �X̂σ1 (s)= σ2 �X̂σ2 (s)

)
∧
(
σ′1 �X̂σ1 (s)= σ′2 �X̂σ2 (s)

)
∧(

σ1 �X̄σ1 (s)= σ′1 �X̄σ1 (s)

)
∧
(
σ2 �X̄σ2 (s)= σ′2 �X̄σ2 (s)

)
 ⇒

(
(σ1

s−→ σ′1)⇔ (σ2
s−→ σ′2)

)
.

That is, whenever σ1, σ′1, σ2, and σ′2 are related as in fig. 5.1, it follows that

σ1
s−→ σ′1 ⇔ σ2

s−→ σ′2.

Fig. 5.1. Relationships between σ1, σ′
1, σ2, and σ′

2 described in lemma 5.2. An edge
D between two states indicates they are equal when restricted to the domain D.

σ1 σ′
1

σ2 σ′
2

X̄σ1(s)

X̂σ1(s)
X̄σ2(s)

X̂σ1(s)

Proof. First, observe that for the antecedent to hold, it must be the case that
X̂σ1

(s) = X̂σ2
(s) (and, therefore that X̄σ1

(s) = X̄σ2
(s)). We can therefore reason

(without loss of generality) only with X̂σ1
(s) and X̄σ1

(s).
We proceed by induction on s.

Base Cases

– s = ε.

By (4.6.2), T(Aσ1(s)) = ∅; therefore X̂σ1(s) = ∅, so σ1 = σ′1 and σ2 = σ′2.

By (4.5.4), for any σ, σ
ε−→ σ, so the lemma holds.

– s = T x;.

By (4.6.3), T(Aσ1
(s)) = P(x); therefore X̂σ1

(s) = {x}. By (4.5.5), σ1
s−→ σ′1

whenever σ1 = σ′1 �X (where X is the set of in-scope objects before s)

and σ′1 is additionally defined on x. Moreover, whenever σ1
s−→ σ′1, and the

antecedent of the lemma holds, it is also true that σ2
s−→ σ′2. Therefore the

lemma holds for s = T x;.

– s = op(ids);.

Let there be some (op, π, pre, post , S) ∈ M . It follows from (4.5.7) and the

definition of
s−→ (4.5.1) that σ1 ` pre ⇔ σ1 ` pre(s). By assumption, for each

object x mentioned in s, σ1(x) = σ2(x). Because pre mentions only objects

26 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

in π (by well-formedness definition 3.15), it follows that σ1 ` pre ⇔ σ2 ` pre
(and, therefore, that σ2 ` pre ⇔ σ2 ` pre(s)). Therefore σ1 ` pre(s)⇔ σ2 `
pre(s). By analogous reasoning, we see that σ1(0), σ

′
1 ` post(s)⇔ σ2(0), σ

′
2 `

post(s). Therefore, σ1
s−→ σ′1 ⇔ σ2

s−→ σ′2.

Inductive Step

Assume the lemma holds for s1 and s2.

– s = s1; s2;.

Assume we have some states σ1, σ2, σ
′
1, σ
′
2 related as in fig. 5.1. Without loss

of generality we proceed from σ1
s−→ σ′1. By (4.5.8), σ1

s−→ σ′1 whenever(
∀σ′′ : σ1

s1−→ σ′′ : σ′′ ` pre(s2)
)
∧
(
∀σ′′ : σ′′

s2−→ σ′1 : σ1(0), σ
′′ ` post(s1)

)
.

By our inductive hypothesis, then, it is also true that(
∀σ′′ : σ2

s1−→ σ′′ : σ′′ ` pre(s2)
)
∧
(
∀σ′′ : σ′′

s2−→ σ′2 : σ2(0), σ
′′ ` post(s1)

)
.

Therefore, by (4.5.8), σ2
s−→ σ′2. Therefore, given σ1, σ2, σ

′
1, σ
′
2 related as in

fig. 5.1, it follows that σ1
s−→ σ′1 ⇔ σ1

s−→ σ′2.

– s = if x then s1 else s2 end;.

By (4.5.9), σ1
s−→ σ′1 if and only if either σ1

s1−→ σ′1 or σ1
s2−→ σ′1. Since by our

inductive hypothesis the lemma holds for both s1 and s2, it also holds for s.

– s = while x do s1 end;.

By (4.5.10), σ1
s−→ σ′1 if and only if either ¬σ1(x) (in which case σ1 = σ′1,

and the lemma holds for the same reasons as when s = ε) or σ1(x) and

σ1
s1; while x do s1 end−−−−−−−−−−−−−−→ σ′1. Since we have shown that the lemma holds for

s1; s2;, it also holds for s.

– s = cobegin par end;.

By the grammar in fig. 4.1, par consists of a list of 〈op-call〉s oi, which we
showed above each individually satisfy the lemma. Therfore, if σ1 ` pre(s),
then by (4.5.12) there must be some oi in par such that σ1 ` pre(oi). So
it is also true that σ2 ` pre(oi), so σ2 ` pre(s). Similarly, if σ′1 ` post(s)
then it follows that σ′1 ` post(oi) for every oi in par . Thus, we have that
σ′2 ` post(oi) for each i and therefore σ′2 ` post(s). Therefore the lemma
holds for s.

Therefore, by induction, we have that the lemma holds for all s, σ1, σ2, σ
′
1, σ
′
2.

Modular Proofs of Correctness for Parallel Programs 27

Lemma 5.3. Given two operation contracts o1 = (i1, π1, pre1, post1, S1), o2 =
(i2, π2, pre2, post2, S2), bodies b1, b2 such that (b1 7→ o1 ∧ b1 � o1) ∧ (b2 7→
o2 ∧ b2 � o2), and state σ,

S1(σ) ‡ S2(σ)⇒ Aσ(b1) ‡Aσ(b2).

Proof. Let bodies b1 and b2 be in realizations with fields F1, F2 and interference
correspondences I1, I2, respectively. Without loss of generality, we work only
with b1, o1, and I1, for which we will omit subscripts; the proof and definitions
are analogous for b2, o2, and I2.

By eq. (4.6.1), Aσ(b) is the application of function Î to the actual effect of
the statements s that make up b.

To obtain a useful instance of lemma 2.9, we first define the function jσ as
follows:

jσ(x) =

{
I(σ, x) x ∈ P̂(F)

x otherwise

From this, we observe that Î(σ, e) = R
(
Jσ(e.A), Jσ(e.P)

)
where Jσ is defined

relative to jσ as in lemma 2.9. We further observe that Aσ
(
o(p)

)
= S(σ)[p→ π]

for some sequence of arguments p; that is, by definition 3.12, Î
(
σ,Aσ(s)

)
v

S(σ)[p→ π].
Next, by lemma 2.7, if S1(σ) ‡ S2(σ), then Aσ

(
o1(p1)

)
‡ Aσ

(
o2(p2)

)
. By

lemma 2.9 (and lemmas 2.2 and 2.7), if Aσ
(
o1(p1)

)
‡ Aσ

(
o2(p2)

)
then Aσ(b1) ‡

Aσ(b2). Therefore, S1(σ) ‡ S2(σ)⇒ Aσ(b1) ‡Aσ(b2).

Lemma 5.4. Operation calls can be replaced with any correct body without com-
promising correctness. Formally,

∀s, t, op, o, p, b : (s; o(p); t 7→ op ∧ b 7→ o)⇒ (s; b; t 7→ op)

Proof. By eq. (4.5.8),

s; o(p); t 7→ op ⇒(
∀σ, σ′, σ′′ : σ

s−→ σ′ : σ′
o(p)−−→ σ′′ ⇒ σ′′ ` pre(t)

)
.

By definition 3.11 and eq. (4.5.1),

b 7→ o⇒(
∀σ, σ′ : σ

b−→ σ′ ⇒ σ
o(p)−−→ σ′

)
⇒

∀σ, σ′ :
(
σ ` o.pre ⇒ σ ` pre(b)

)
∧
(
σ′ ` post(b)⇒ σ′ ` o.post

)
.

Therefore,

s; o(p); t 7→ op ⇒(
∀σ, σ′, σ′′ : σ

s−→ σ′ : σ′
b−→ σ′′ ⇒ σ′′ ` pre(t)

)
.

28 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

Then, by definition 3.11 and eq. (4.5.8),(
s; o(p); t 7→ op ∧ b 7→ o

)
⇒
(
s; b; t 7→ op

)
.

Define ôp,q be the operation contract induced by operation contracts p and
q as follows (when p and q are understood, they are left out and we refer simply
to ô):

ôp,q =

π : p.π ◦ q.π,

pre : pre(p(p.π); q(q.π)) ∨ pre(q(q.π); p(p.π)),

post : post(p(p.π); q(q.π)) ∧ post(q(q.π); p(p.π)),

S(σ) : p.S(σ) t q.S(σ)

 (5.0.1)

Lemma 5.5.

∀s, t1, t2, r, op : s; t1; t2; r 7→ op : s; ôt1,t2 ; r 7→ op.

Proof. Suppose that s; t1; t2; r 7→ op for some operation contract op = (i, π, pre, post , S),
and that

∀σ, σ′ : σ ` pre ∧ σ s−→ σ′ : A′σ(t1) ‡A′σ(t2).

Then, by definition 3.11 and eq. (4.5.1),

∀σ, σ′ : σ
s;t1;t2;r−−−−−→ σ′ ⇒ σ ` pre ∧ σ′ ` post .

By eq. (4.5.8), the state of the program after s satisfies both post(s) and pre(t1; t2; r)
and the state after s; t1; t2 satisfies both post(s; t1; t2) and pre(r). It is also true
that

pre(t1; t2; r)⇒ pre(t1; t2) ∧ post(s; t1; t2)⇒ post(t1; t2).

By eq. (5.0.1),

pre(ôt1,t2) = (pre(t1; t2) ∨ pre(t2; t1)) ∧
post(ôt1,t2) = (post(t1; t2) ∧ post(t2; t1)).

Clearly, then, pre(t1; t2) ⇒ pre(ôt1,t2) and post(ôt1,t2) ⇒ post(t1; t2). There-
fore, whatever state the program is in after s (which we saw above must sat-
isfy pre(t1; t2; r) and therefore pre(t1; t2)) also satisfies pre(ôt1,t2). Further, what-
ever state the program is in after s; t1; t2 (which we saw above must satisfy
post(s; t1; t2) and therefore post(t1; t2)) also satisfies post(ôt1,t2). Therefore,

σ
s;ôt1,t2 ;r
−−−−−−→ σ′ ⇒ σ

s;t1;t2;r−−−−−→ σ′,

and therefore

s; t1; t2; r 7→ op ⇒ s; ôt1,t2 ; r 7→ op.

Modular Proofs of Correctness for Parallel Programs 29

Theorem 5.1 (Non-interfering Statements Commute). For any two op-
erations o1, o2 with valid bodies s1, s2, if

∀σ, p1, p2 :(
σ ` pre(o1(p1); o2(p2)) ∨ pre(o2(p2); o1(p1)) : o1.S(σ) ‡ o2.S(σ)

)
,

then

1. s1; s2 is a valid operation body for ôo1,o2 if and only if s2; s1 is a valid oper-
ation body for ôs1,s2 . That is,

(s1; s2 � ô ∧ s1; s2 7→ ô)⇔ (s2; s1 � ô ∧ s2; s1 7→ ô)

2. cobegin s1‖s2 end is a valid operation body for ôo1,o2 if and only if either
s1; s2 is a valid operation body for ôo1,o2 . That is,

(cobegin s1‖s2 end � ô ∧ cobegin s1‖s2 end 7→ ô)⇔(
s1; s2 � ô ∧ s1; s2 7→ ô

)
.

Proof. First, by eq. (4.6.6), definition 3.11, and theorems 2.1 and 2.2,

s1; s2 � ô ∧ s2; s1 � ô ∧
cobegin s1‖s2 end � ô,

i.e., the actual effect of the sequential composition of the two statements in
either order is covered by the specified effect in ô, as is the actual effect of their
parallel composition.

We show that the implements relation (7→) holds by induction on the “ab-
straction level” of the statements (i.e., how far removed they are from primitive
operations).

Base Case

The base case is when s1 and s2 both consist of a single call to Prim (and o1, o2

are equivalent to Prim). First, pre(s1; s1) and pre(s2; s2) are both true (i.e.,
ôo1,o2 .pre = true). By (Prim), each sequence of parameters p1 and p2 is divided
into two subsequences, πA and πP . Additionally, the value of each object in πP is
the same after the operation as it was before the operation. Next, because Prim

places entire objects into the A and P sets of the (constant) specified effect S (i.e.,
the objects are not divided based on their partitions), the two calls to Prim are
noninterfering (Aσ(s1) ‡Aσ(s2)) only when either no objects are shared between
the two calls or all of the shared objects are in πP for both calls. Therefore, by
the Frame Rule (4.5.2), all shared objects have the same value after s1; s2 as
they have after s2; s1—specifically, their value has not changed. Moreover, by
lemma 5.1 and eq. (4.5.2), any object not an argument in either s1 or s2 has the
same value before and after s1; s2 and s2; s1. Finally, we consider those objects
that appear in πA for either s1 or s2 (but not both!)—without loss of generality

30 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

consider those objects that appear in s1 but not s2. Each object x that appears
in s1 but not s2 has, after s1 is complete, value x′. But x does not appear in
s2, so its value after s2 is also x′, so the value of x after s1; s2 and s2; s1 is the
same: x′. Therefore, if Aσ(s1) ‡ Aσ(s2), post(s1; s2) = post(s1; s2); therefore by
(4.5.8) s1; s2 7→ ô⇔ s2; s2 7→ ô.

Since Prim is atomic, the parallel execution of two calls to Prim is exactly
equivalent to one of the sequential orderings of those calls (which themselves are
equivalent, as shown above); therefore, s1; s2 7→ ô⇔ cobegin s1‖s2 end 7→ ô.

Inductive Step

Assume the theorem holds for each consitituent statement in s1 and s2 which are
valid bodies for some operations o1, o2 with preconditions pre1, pre2, postcondi-
tions post1, post2, and specified effects S1 and S2, respectively. Further assume
σ is such that S1(σ) ‡ S2(σ) and σ ` pre1 ∨ pre2.

We adopt the following conventions and notations for the remainder of the
proof:

– Every statement is an operation call. This does not reduce generality because
any other kind of statements (such as conditional statements and loop) can
be refactored as an operation contract and associated body.

– An operation body s is treated as the sequential composition of statements
s[1]; s[2]; . . . ; s[|s|].

– s[i, j) is the subsequence of statements in s from the ith through (j − 1)th
statements, well-defined whenever 1 ≤ i ≤ j ≤ |s|+ 1.8

– bs is a valid operation body for the operation call in statement s.

By eq. (4.6.6), lemmas 2.7 and 2.9, and theorems 2.1 and 2.2,

∀σ, i, j : σ
s1[1,i)−−−−→ σi ∧ σ

s2[1,j)−−−−→ σj : Aσi(s1[i]) ‡Aσj (s2[j]). (5.0.2)

Without loss of generality, we consider s1; s2 (the same proof applies to
s2; s1). The statements s1[|s1|] and s2[1] induce ôs (5.0.1). Let σ′ be such that

σ
s1[1,|s1|)−−−−−−→ σ′. By lemma 5.4, for all op,

s1; s2 7→ op ⇒ b1[1]; b1[2]; . . . ; b1[|s1|]; b2[1]; b2[2]; . . . ; b2[|s2|] 7→ op

By (5.0.2),

Aσ′(s1[|s1|]) ‡Aσ′(s2[1]).

So, by inductive hypothesis,

b1[|s1|]; b2[1] 7→ ôs ⇔ b2[1]; b1[|s1|] 7→ ôs.

8 Observe that ∀i, j : 1 ≤ i ≤ j ≤ |s|+ 1 :
∣∣s[i, j)∣∣ = i− j.

Modular Proofs of Correctness for Parallel Programs 31

By eqs. (4.5.7) and (4.5.8) and lemma 5.5,

s1; s2 7→ op ⇒ s1[1, |s1|); s1[|s1|]; s2[1]; s2[1, |s2|+ 1) 7→ op

⇒ s1[1, |s1|); ôs; s2[1, |s2|+ 1) 7→ op.

By lemma 5.4,

b1[1]; b1[2]; . . . ; b1[|b1|−1]; b2[1]; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2] 7→ op.

Now, the statements s1[|s1| − 1] and s2[1] induce ô′s; by the same reasoning as
above we have that

b1[1]; b1[2]; . . . ; b1[|b1|−2]; b2[1]; b1[|s1|−1]; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2] 7→ op,

and we can continue applying the same reasoning to sift b2[1] to the beginning
of the sequence of statements:

b2[1]; b1[1]; b1[2]; . . . ; b1[|s1|]; b2[2]; b2[3]; . . . ; b2[|s2|] 7→ op.

Furthermore, we can sift each statement b2[i] to the front of the b1[j]’s, and we
have that

b2[1]; b2[2]; . . . ; b2[|s2|]; b1[1]; b1[2]; . . . ; b1[|s1|] 7→ op

Since b1[1]; b1[2]; . . . ; b1[|s1|] 7→ s1 and b2[1]; b2[2]; . . . ; b2[|s2|] 7→ s2, it follows that

σ
b2[1];b2[2];...;b2[|s2|];b1[1];b1[2];...;b1[|s1|]−−−−−−−−−−−−−−−−−−−−−−−−→ σ′ ⇒ σ

s2;s1−−−→ σ′.

Therefore, by definition 3.11,

b2[1]; b2[2]; . . . ; b2[|s2|]; b1[1]; b1[2]; . . . ; b1[|s1|] 7→ op ⇒ s2; s1 7→ op.

By transitivity of ⇒, then, we have that

s1; s2 7→ op ⇒ s2; s1 7→ op

Therefore,

s1; s2 7→ ôo1,o2 ⇒ s2; s1 7→ ôo1,o2 .

By swapping s1 and s2 and performing the same sifting process as above, we
conclude

s2; s1 7→ ôo1,o2 ⇒ s1; s2 7→ ôo1,o2 .

Therefore,

s1; s2 7→ ô⇔ s2; s1 7→ ô.

Through the sifting process, it was established that every possible interleav-
ing of the consituent statements in s1 and s2 is also a valid operation body for
ôo1,o2 . Therefore, if s1; s2 is a valid operation body for ô, then cobegin s1‖s2 end

is also a valid operation body for ôo1,o2 .

32 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

5.1 Implications

The effects calculus and programming model have interesting implications for
writing and reasoning about parallel programs. In particular, theorem 5.1 implies
that non-interfering operation calls commute even when their specifications indi-
cate otherwise. Consider the operation contracts for rem and add in eqs. (5.1.2)
and (5.1.3) that operate on a Queue (with entries of type T) with type speci-
fication as in eq. (5.1.1). Each object of type QueueT has a partition with two
pieces named h and t, i.e., ∀q : [q : QueueT] : P(q) = {h, t}.

QueueT =
(
T ∗, 〈〉, {enqueue, dequeue, isEmpty}

)
(5.1.1)

An object of type
QueueT is a string
with entries of type T .

QueueT .v0 is the
empty string.

QueueT provides these op-
erations (their contracts are
as would be expected).

rem =

i : Remove An End,

π : 〈q, x〉,
pre : [q : QueueT] ∧ |q| > 0,

post : q0 = q ◦ 〈x〉 ∨ q0 = 〈x〉 ◦ q,
S(σ) : ({q@h} ∪ P(x), ∅)

 (5.1.2)

add =

i : Add An End,

π : 〈q, y〉,
pre : [q : QueueT] ∧ [y : T],

post : q = q0 ◦ 〈y0〉 ∨ q = 〈y0〉 ◦ q0,

S(σ) : ({q@t} ∪ P(y), ∅)

 (5.1.3)

Next, consider the program fragment below in which objects q, u, and v are
initialized previously.

Listing 5.1. Program fragment demonstrating utility of theorem 5.1.

remove_An_End(q, u);
Add_An_End(q, v);

Assume the program is in the following state at the beginning of the fragment:

q = 〈10, 20, 30〉 ∧ u = 4.

By looking solely at the behavioral specifications of the two operations (i.e., the
pre and post in the contracts), it can be shown (via (4.5.8)) that the program is
in one of the following states after the two statements:

Modular Proofs of Correctness for Parallel Programs 33

– q = 〈4, 10, 20〉 ∧ v = 30
– q = 〈20, 30, 4〉 ∧ v = 10
– q = 〈4, 20, 30〉 ∧ v = 10
– q = 〈10, 20, 30〉 ∧ v = 4

However, the possible states can be whittled down by recognizing that the
two operation calls are non-interfering. Using theorem 5.1, we recognize that
the program above (rather, the sequential composition of two valid bodies for
Remove_An_End and Add_An_End) is a valid operation body for the following
contract (5.1.4).

rot =

i : Rotate Once,

π : 〈q, u, v〉,
pre : [q : QueueT] ∧ [u : T] ∧ [v : T],

post :

((
q = 〈u0〉 ◦ q0[0, |q| − 1) ∧ 〈v〉 = q0[|q| − 1, |q|)

)
∨(

q = q0[1, |q|) ◦ u0 ∧ 〈v〉 = q0[0, 1)
))

,

S(σ) :
(
P(q) ∪ P(u) ∪ P(v), ∅

)

(5.1.4)

Therefore, we can conclude that the state at the end of the program in
listing 5.1 is one of the following two states (rather than one of the four above):

– q = 〈4, 10, 20〉 ∧ v = 30
– q = 〈20, 30, 4〉 ∧ v = 10

In fact, the theorem leads to even a stronger conclusion. The two states
above are also the only possible states after either of the following two program
fragments given the same initial conditions:

Add_An_End(q, v);
remove_An_End(q, u);

cobegin
Remove_An_End(q, v);
Add_An_End(q, u);

end

Moreover, observe that except for type restrictions, rot .pre ≡ true. This
implies that, even when |q| = 0, the parallel execution of Add_An_End and
Remove_An_End will leave the program in one of the two states above.

6 Conclusion

The plausibility and utility of an effects calculus to abstractly characterize the
conditions under which parallel execution is safe was demonstrated, and a model
of programming that leverages the theoretical results from the calculus was pro-
posed. Several results were proven through the effects calculus and programming

34 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

model, most notably that non-interfering statements commute even if the be-
havioral specifications of those statements do not. A proof rule for the modular
verification of correctness for simple fork-join parallel programs was proposed
and proved sound using those results.

It is expected that the effects caluclus can be expanded to model addiitonal
parallel programming primitives beyond the cobegin statement, such as await,
for example by adding a third set to effects that represents “atomically affected”.

