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1 | INTRODUCTION

Most modern programming languages rely on pointer and
reference copying for efficient data movement. When refer-
ences to mutable objects are copied, aliases are introduced,
often complicating formal and informal behavioral reason-
ing. While some aliasing (and related complexity in reason-
ing) is unavoidable in software development, this paper ex-
plains how aliasing, and its impact on reasoning, can be
minimized for practical software development by leverag-
ing the relatively recent introduction of move semantics in
C++ (as of C++ 11), simultaneously maintaining important
performance properties of traditional programming. Our
central contribution lies in a carefully-developed discipline
for programming based on move semantics to avoid most
routine introduction of aliasing in programming, thereby lead-
ing to simpler reasoning about the behavior of software.
The discipline requires attention to interface and implemen-
tation development. The ideas are illustrated using compo-
nents that we have built with and without the use of unique

pointers.
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A central reason for the introduction of objects in modern programming languages is to facilitate abstraction and reuse,

which in turn make it easier to develop high-quality software. These benefits, however, are compromised when object
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references are aliased [1, 2, 3, 4, 5, 6]. In the presence of aliasing (and mutable objects), references cannot be assumed
to be independent. That is, the modification of an object’s value affects the value of that object as seen through aliased
references—even though those other references are not mentioned in the code that changes the object’s value. As a
result, aliasing complicates reasoning and can undermine both abstraction and reuse.

1.1 | Aliasing and Reasoning

A language with explicit references gives rise to aliases, either through assignment statements or parameter pass-
ing. Aliases, however, create significant challenges for reasoning by undermining modularity and by forcing memory
addresses to be part of the state of the program [7]. Because of potential aliasing, verification in popular languages
such as Java requires establishing the frame property (that objects not mentioned do not change) for practically every
method call. Some machinery such as separation logic [8, 3] or equivalent is absolutely necessary to ease this process
[9]. When there is potential for aliasing, modular reasoning of one component at a time becomes difficult because it
is not possible to reason about variables using their abstract values in specifications and instead their data represen-
tations become relevant, which breaks abstraction [10]. Though there has been progress, the automation of software
verification remains a challenge when code involves objects and aliased references as discussed in Section 2.

Reasoning, whether formal or informal, is easier when a programming language has rich and clean semantics
[11]. Rich semantics means that an object can be viewed abstractly as a value in a suitable mathematical domain (as
opposed to a memory address). Clean semantics means that the effects of an operation are restricted to its explicit
parameters. Supporting rich and clean semantics efficiently requires language support for an alternative to both
reference assignment (which creates aliases) and deep-copying assignment (which is slow). It also requires careful
component interface and implementation design. The benefit of such a system is that statements that do not share
variables are necessarily independent. This benefit also applies to parallel programs, where parallel threads with
distinct variables are necessarily non-interfering, greatly simplifying verification.

Although making deep copies of data representations of objects instead of copying object references (e.g., in
assignments and parameter passing) eliminates aliasing, it comes with a prohibitive performance penalty. Therefore,
several research efforts have focused on a range of solutions to eliminate or minimize aliasing, without a need to
make deep copies. These efforts include the use of unique references, ideas of ownership, and swapping, among
others[10, 4, 12]. A recent paper in The Art, Science, and Engineering of Programming contains an excellent motivation
for minimizing aliasing and, indirectly, for simplified reasoning [13]. The solution proposed in that paper is the design
of a new language ParaSail that, among other things, includes operators for moving and swapping as alternatives to
assignments.

Unlike several of the prior efforts in this realm that involve new language design and features, this paper proposes
a discipline within a practical, applied programming language, C++, with the aim of making the results broadly appli-
cable immediately to the practicing community. The discipline leverages existing language features rather than novel
extensions. The goal of this discipline is to support rich and clean reasoning by eliminating aliases where possible (and

curtailing them where necessary), without compromising performance.

1.2 | A Discipline Based on Move Semantics

The motivation for adopting software disciplines in general is well-understood: programming without a strict software
discipline produces code that is hard to read, even harder to understand, and nearly impossible to prove correct (if in

fact it is correct). Following even the simplest of software disciplines—naming conventions, formatting conventions,
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etc.—dramatically improves the readability and understandability of a program. More sophisticated disciplines, how-
ever, are needed for substantial progress towards easing (automated) reasoning. For this reason, many idioms, design
patterns, style guides, and language mechanisms have been devised that attempt to improve this facet of software
engineering. A common theme among many of these disciplines is alias control, in which aliased references are adver-
tised, made immutable, or eliminated altogether. The discipline here shares similar objectives, but the approach relies
on existing language mechanisms in a language widely used in practice, rather than introducing new capabilities to a
language or starting from scratch with an entirely new language.

Since C++ 11, the C++ specification has included provisions for changing the way value-passing works in certain
situations by introducing the concept of move semantics. A primary motivation for adopting move semantics is perfor-
mance improvement related to how temporary variables such as return values and expression values are treated by
the compiler. However, this relatively new addition can also be leveraged for robust software development to avoid
most routine aliasing without compromising performance and without inventing new language additions. When move
semantics are used, some design and specification changes must be made to data abstractions to make it explicit that
some operations might not behave as expected by C++ programmers who are not used to move semantics.

1.3 | Outline

Move semantics in C++ are discussed in detail in Section 2, and additional benefits beyond performance are enumer-
ated. The Clean++ discipline is discussed in Sections 3-6 followed by a brief discussion of our experience evaluating
Clean++ in Section 7. Directions for further exploration of Clean++ are presented in Section 9 and work related to
this research is discussed in Section 8. Finally, Section 10 contains our conclusions.

2 | MOVE SEMANTICS IN C++

Introduced in the C++ 11 specification, move semantics is a mechanism designed to improve the performance of data
movement [14]. It is an efficient alternative to both traditional pass-by-value and pass-by-reference. Its efficiency
stems from avoiding a deep copy by moving a value from one variable to another, leaving the old variable in an
undefined state.

In C++, an expression appearing on the right-hand side of an assignment operation is one of two kinds: an I-value
or an r-value. An I-value represents something occupying an identifiable location in memory and is therefore suitable
for the left-hand side of an assignment, for example a variable (x), a pointer dereference (xp), or a function returning
a reference (a[3]1). An r-value, on the other hand, represents the temporary result of an expression evaluation and
is not suitable for the left-hand side of an assignment, for example new T(), a literal, or an address-of operation (&x
). Beginning with C++ 11, r-values are further divided into r-value references and const r-values: the former may be
modified while the latter may not.

What use is it to modify an r-value, given that r-values are temporary values poised to go out of scope very soon?
A key observation that led to the inclusion of move semantics is that in order to implement “moving assignment”, the
right-hand side might have to be modified (e.g., by being set to nul1ptr or an initial value for its type). The idea behind
moving assignment is that precisely because the right-hand side is poised to go out of scope, the left-hand side does
not need to make a copy. Rather, it is enough to merely steal ownership of the data from the right-hand side.

Move semantics offer clear performance benefits. When a parameter to a method is passed by value, or when

a variable is assigned with the assignment operator, the copy constructor or copy assignment operator is called (which
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might make a deep copy). For large or complex data types, copying can be expensive or difficult to implement, or
both. If the value of an actual argument to a method call is not needed after the call completes, then parameter
passing can be made far more efficient by moving the value of the actual argument to the formal parameter, leaving
the actual argument in an easily constructed (or undefined) state. In Appendix ??, a sample program is shown in
which copy semantics leads to the creation of several unnecessary copies of a resource; employing move semantics
eliminates this copying and results in a single allocation of the resource, whose value is then moved between variables,

parameters, and return values.

2.1 | Reasoning Benefits of Move Semantics

In typical C++ programs, there are often many pointers and references. Sometimes, the use of pointers stems from the
implementation of a linked data structure with unavoidable aliases, such as a directed graph. Often, however, aliases
arise from efficiency concerns as they provide a mechanism for constant-time and constant-space assignment and
parameter passing. For example, consider the list component from the standard template library. This component’s
insert method creates a copy of each inserted item. To avoid expensive copying, a list could be declared to hold
pointers (T*) rather than the items themselves (1).

Unfortunately, the use of pointers and reference semantics creates significant challenges for reasoning about
the behavior of code. At the root of these challenges is the fact that aliases permit a program fragment to affect
variables that are not explicitly mentioned by that fragment (violating the clean semantics property). Put another way,
understanding the effect of a program statement requires, in the worse case, a whole-program analysis of pointer
variables and the memory addresses they contain.

Consider the aliasing illustrated in the program below.

int main(int argc, const char* argvl[])

{
int* a = new int[3];
for (int i = 0; i < 3; i++) { alil = i+1; }
int* b = aj;

b[1] = 4; // modify array b
printf ("by=y{%d,u%d, %d\n", b[0], b[1], b[2]);
printf ("ay=y{%d, %d, %dX\n", al0]l, al1l, al2]);

return O;

The program prints the same value for both a and b: {1, 4, 3}, even though a is not mentioned anywhere in
the statement on line 6 that modifies b. Obviously this simple example is trivial to reason about, but understanding
even slightly more complicated programs in a systematic, modular, or automated way is intractable in the general case
(because the code that modifies b might be hidden inside the body of a function or method call replacing line 6).

21.1 | Memory Management

One specific manifestation of these challenges is the difficulty of memory management. Properly balancing memory
allocation and deallocation is notoriously hard, as evidenced by the ubiquity of errors related to memory leaks, dangling
pointers, and null dereferences (and by the existence of garbage collectors). Using move semantics and programming

according to a strict discipline with can eliminate many of these errors. A relatively new programming language called
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Rust [15] aims to tackle this class of errors by employing moving semantics by default and providing a strict set of
rules whenever data is shared between variables. It is discussed in relative detail in Section 8.1.

To eliminate aliasing in the example above, we could encapsulate an array inside a class and override the construc-
tor and assignment operator for that class, allowing only the moving versions of them. The modified code would look

like the following listing.

class MoveArrInt
{
private:
int m_al[];
public:
MoveArrInt (const MoveArrInt& m_arr) = delete;
MoveArrInt (MoveArrInt&& m_arr)
{
m_a = m_arr.m_a;
m_arr.m_a = new int [0];
}
MoveArrInt (int*&& arr)
{
m_a = arr;

arr = new int[0];

MoveArrInt& operator=(const MoveArrInt& m_arr) = delete;
MoveArrInt& operator=(MoveArrInt&& m_arr)
{

if (&m_arr == this)

{

return *this;

}

delete[] m_a;

m_a = m_arr.m_a;

m_arr.m_a = new int [0];

return *this;

int& operator []J(std::size_t idx)
{
return m_al[idx];
}
}s

int main(int argc, const char * argv[])
{
MoveArrInt a(mnew int[3]);
for (int i = 0; i < 3; i++) { alil = i+1; }

MoveArrInt b = std::move(a);
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b[1] = 4; // modify array b
printf ("by=u{%d,u%d, %d*\n", b[0], b[1], b[2]);
printf ("ay=y{%d,u%d, %d\n", al0]l, altl, al2]);

return O;

The MoveArrInt class deletes the copy constructor and copy assignment operator, opting instead to only allow
construction and assignment when the argument or right-hand side is an r-value reference. The result, as seen in
the main method, is that when constructing or assigning a MoveArrInt from another one, the client must enclose the
argumentin a call to std: :move. Introduced in C++ 11 along with move semantics, the std: :move operation does nothing
but convert its argument to an r-value reference, effectively marking it as unowned (and hence modifiable). Because
the C++ language specification does not define the value of a variable after it is moved, a moved variable should never
be used after such a call until it is assigned a new value. Indeed, printing the value of b on line 43 displays {1, 4, 3}

as before, but printing the value of a on line 44 displays garbage values.

In the modified program, there is never more than one variable that “owns” any one chunk of memory. Aliasing is
eliminated, and it becomes possible to reason locally about the program: the value of a is not changed by the statement
on line 42, nor can any statement not explicitly mentioning a change its value.

This design pattern can be extended to include a wide range of data types, including linked data types and oth-
ers whose values are typically allocated and managed on the heap. By implementing move constructors and move
assignment operators and also deleting their copying counterparts, aliases can be prevented while the performance

benefits afforded by reference semantics are be preserved.

3 | Clean++: A DISCIPLINE FOR SOFTWARE ENGINEERING IN C++

The use of move semantics makes it possible to write clean, modular code that is easy to understand and reason
about. A discipline based on move semantics would, ideally, encourage abstraction and understandability, and would
guarantee the soundness of local reasoning.

In this section, we introduce a discipline called Clean++ for C++ programming based on these goals and others.

Specifically, the development of Clean++ was directed by several broad goals:

e  Soundness of Local Reasoning. A Clean++ program should exhibit behavior that isimmediately apparent from locally
reasoning about the code: e.g., reasoning about a function call should not require knowing the implementation
details of that function. Ensuring the soundness of local reasoning also includes minimizing aliases.

e Preservation of Good Object-Oriented Programming Practices. A programmer writing in the Clean++ discipline
should be guided by the rules and structures of the discipline to write code that makes judicious use of data
abstractions to maximize modularity.

e  Familiarity. A Clean++ program should be familiar to a C++ programmer. It should “look like” C++ and the behavior
of the program should not be unexpected to an experienced C++ programmer.

In summary, the Clean++ discipline has eight rules.
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Mutability

The Clean++ discipline has been developed with a specific focus on mutable data because immutable data preempts
the reasoning problems posed by aliased references. Immutable types in Clean++ have no marked differences com-
pared to their counterparts in idiomatic C++, so they are ignored in this discussion.

3.1 | Soundness of Local Reasoning

Local reasoning is a technique by which automated verifiers are able to tractably verify the correctness of rela-
tively large programs. There are many language features of mainstream programming languages that complicate local
reasoning—and, in some cases, break it entirely.

Perhaps the leading cause for unsound local reasoning is the prevalence of aliased references. When two vari-
ables refer to the same piece of memory, they are called aliases, and the modification of the data through one of the
variables will change the value of the other (at least, most people would say so). It is thus desirable for a programming
discipline that wishes to maintain the soundness of local reasoning to preclude aliases where possible and advertise
or encapsulate them where necessary.

There are several options for maintaining the soundness of local reasoning in Clean++. The first is to prefer
statically allocated “stack” variables, which by default are copied on assignment. Of course, the performance of stack
variables is prohibitive in many cases so the possiblity of dynamically-allocated objects must be accounted for.

Experience has shown that it is possible to develop real-world software with dynamically-allocated objects that
has no aliases whatsoever [16], and design patterns that support such components are preferred when applicable. A
good way to prevent aliases is to use types with appropriate move constructors and move assignment operators, and
to use them everywhere. An example of such a type from the standard template library is std: :unique_ptr, a “smart
pointer” that expresses singular ownership of its contents. Any assignment of a std: :unique_ptr must be enclosed
in a call to std: :move, Which relinquishes ownership. A program in which all raw pointers are replaced with unique
pointers is a program in which there are no aliases.

There are, however, situations that necessitate data sharing of some form—usually aliasing. In such cases, a
Clean++ program encourages the use of the std: :shared_ptr type, which advertises the fact that a variable might have
an alias. Put another way, in a traditional C++ program, the default for any reference is that it may be aliased. To
prevent such aliasing, the programmer must do something special such as using std:unique_ptr. On the other hand,
in a program that follows the Clean++ discipline, the default for any reference is that it may not be aliased and the
programmer must explicitly allow such aliasing, if needed, with std: :shared_ptr. The situations in which a shared
pointer is necessary are rare and include the implementation of cyclic data structures.

Clean++ Rule 1

All pointers are instances of std: :unique_ptr. In the rare situations when data sharing is absolutely necessary,

std: :shared_ptr is used.

Another source of unsoundness in local reasoning is null pointers. If a function takes a parameter that might be
null, and it attempts to dereference a null pointer, this is a failure of local reasoning. The most obvious way to avoid
null dereferences is to prevent null pointers entirely. Experience has shown that eliminating null pointers entirely is,
in general, possible, but it leads to code that might be unfamiliar to C++ programmers used to dealing with nullable
pointers.

In Clean++, pointers are initialized at the point of their declaration to refer to a default object of the appropriate
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type. This leads to some important reasoning properties, though it is not always feasible for performance reasons,
especially in low-level implementations of Clean++ components (i.e., those that use something besides other Clean++
components), and for that reason Clean++ permits null pointers in low-level implementations provided they are never
leaked to client code. Eliminating null references eliminates a significant category of run-time errors, making programs
written in Clean++ safer by default.

Clean++ Rule 2

If a null pointer is used in the implementation of a Clean++ component, it may never be leaked to client code.

3.1.1 | Parameter Passing and Return Types

Every parameter to a method in a Clean++ program should be an rvalue reference. Although this rule causes Clean++
to deviate somewhat from idiomatic C++ more than other rules, the benefits of doing so far outweigh the familiarity
concerns. First, rules regarding ownership force Clean++ to do something different in certain situations where, for
example, several parameters to a method are to have their values changed. One alternative to solve this problem is
to permit pass-by-reference, which is avoided because it creates aliases.

Clean++ Rule 3

Every method parameter is passed as an rvalue reference.

Since all of the parameters to a method are rvalue references (that is, they are moved into the method rather than
copied), the arguments lose their values. Sometimes, however, keeping the argument values around is necessary for
one reason or another—normally performance. Therefore, rule 3 has a closely-related counterpart, rule 4: std: : tuple
is the default return type of methods in Clean++. Each method should return both any newly-created objects and
the updated values of all arguments as components of a tuple. This idiom allows Clean++ to simulate “pass-by-swap”
as is implemented in verification- and reasoning-focused languages such as RESOLVE [17]. A secondary positive
side effect of this rule is that is easy to statically translate more traditional-looking method headers and calls into

Clean++-conformant headers and calls.

Clean++ Rule 4

Every method has a return type of std: :tuple, in which the first component(s) are objects created by the

method, if any, and the rest are the arguments in left-to-right order.

Exception: Member Functions
Member functions in C++ always pass their receiver by reference,!and because member functions are imperative to
producing good C++ code, this limitation on member functions produces exceptions to the rules above: the receiver

to a member function can, indeed, be passed by reference (and its value might be changed).

Litis possible in C++ to pass a receiver as an rvalue reference with a ref-qualified member function, but the complications that arise when doing so in a way
that is compatible with the rest of Clean++ are overwhelming and therefore ref-qualified functions are not recommended in Clean++.
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Exception: Single or No Return Values

Sometimes, a method will be simple enough that using a tuple as described above would involve a tuple with a single
component (or be empty). In that case, of course, the method need not wrap the return value in a tuple. Situations
in which this exception applies include methods for which every argument is intended to have its ownership relin-
quished by the client, or in which there is only one parameter (excluding the distinguished parameter). Examples of
this exception in practice appear in the Clean++ Stack component below in section 5.2: neither the Push nor Pop
method returns a tuple.

3.2 | Support for Good Object-Oriented Programming Practices

In Clean++, a programmer is guided, by the encapsulation restrictions on aliases and null references, to implement
software components with many layers of data abstraction. Doing so allows her to have total control over aliases
and to keep them confined to a single abstraction layer. The principle of alias control is, as noted above, one of the

cornerstones of the Clean++ discipline. A consequence of this pattern is the following rule, rule 5.

Clean++ Rule 5

No method introduces an alias that is visible to the client.

A key feature of software components in Clean++ is that they implement an efficient default no-argument ini-
tializer that produces a coherent value for the type. Doing so ensures that whenever a new variable is created, the

guarantee can be made that a client never sees a null pointer.2

Clean++ Rule 6

Each component implements a no-argument initializer, which can be made efficient.

The final responsibility placed on implementers of software components in Clean++ is that every component
must have an efficient and “correct” implementation of std: :move. Doing so allows a client to leverage built-in C++
move semantics to maintain efficiency without relying on pointer semantics. “Correct” in this case imposese a stronger
requirement than the C++ specification. In particular, a moved object in Clean++ must be left in a consistent initial state
for that type, as if the no-argument initializer had been called. (By contrast, the C++ language specification places no

restrictions on the resulting value of a moved object).

Clean++ Rule 7

Each component deletes its copy constructor and copy assignment operator. Instead, it implements a move

constructor and move assignment operator.

As a convention, software components and their clients written with the Clean++ discipline are declared in the
cleanpp Namespace. Every Clean++ software component extends cleanpp: :base, which is analogous to Java's object
(the superclass of all Java types) but limited to types in the cleanpp namespace.

LISTING 3.1 The cleanpp: :base abstract class.

namespace cleanpp {

2S0me components, such as an Array, might use lazy initialization for performance reasons. Null pointers in such situations are not a problem because their
existence is totally hidden from the client (see rule 2).
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class clean_base {

public:
clean_base () = default;
virtual “clean_base() = default;
virtual void clear () = 0;

};

The cleanpp: :base class defines one pure virtual method, clear(). The purpose of this method is to provide an
efficient way to set an object’s abstract value to an initial value for its type—that is, one produced by the zero-argument
initializer (required by the Clean++ discipline, though its presence is not compiler-enforced). Also included are methods
to facilitate the intuitive use of Clean++ objects with output streams; the print method should be overriden by a

subclass for nicer output; it serves a similar purpose to the Java toString() method in the object class.

Clean++ Rule 8

Each component extends the cleanpp:base abstract class, directly or indirectly.

3.3 | Familiarity

One way in which familiarity is achieved in Clean++ is the manner in which language constructs related to move
semantics (eg, std: :move) are encapsulated within class implementations as far as possible. This encapsulation means
that client code does not include extra syntactic clutter that may be less familiar to a C++ programmer. In other words,
it is possible for both novice and expert C++ programmers to adopt Clean++. The syntax is simple enough for the
former, and familiar enough for the latter. These qualities hold despite a software component built in Clean++ having
a somewhat different structure from the usual C++ style.

3.4 | Additional Considerations Going Beyond the Discipline

The following considerations are not necessarily a novel contribution of this paper, rather they are widely accepted
principles for writing great software. They are discussed here only as examples of well-known software engineering

principles that need not be cast aside to realize the reasoning benefits of writing software in the Clean++ discipline.

3.4.1 | Abstraction and Reasoning

Components in Clean++, by their modular nature, typically provide a clear distinction between the abstract value
and concrete value of a variable. The benefits are similar to the use of “model” variables in [18]. A consequence of
using many levels of abstraction to write software in Clean++ is that often the abstract value of a given type will be
substantially different from the concrete value for that type. For this reason, most components in Clean++ do not use
public fields in classes and instead opt for well-named methods and functions which reflect the abstract value of the
type and not the concrete value. However, this tends to make Clean++ components less familiar to C++ programmers,
and making use of public fields does not necessarily complicate reasoning. It is therefore permissible to use public

fields in Clean++ components, though their use should be considered carefully.
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3.4.2 | Observability and Controllability

Two design principles in identifying suitable operations for interfaces in Clean++ are observability and controllability,
as motivated by Weide et al. to guide the design of abstract data types (ADTs) [19]. The principle of observability
states that a client of a component should be able to distinguish between any two unequal values in the ADT'’s state
space using some combination of operations on the ADT. Controllability, on the other hand, says that every value in
the ADT's state space is reachable through some combination of operations of the ADT. An approach to designing
software components (ADTs) using these principles as a guide tends to produce interfaces which are, in some sense,
“sufficient”. It is for that reason that Clean++ interfaces should be designed with these principles in mind.

4 | PROTOTYPICAL Clean++ COMPONENT STRUCTURE

The implementations of Clean++ components discussed in this paper are only one part (albeit the most complex part)
of a Clean++ software component. In most cases, classes of the kind discussed here are not directly used by a client of
a component; instead the client declares variables of “flex types” that are wrappers around the implementation types.

A flex type in Clean++ has several properties:

1. ltis essentially a wrapper around a std: :unique_ptr to an object of some implementation class.
It provides a default implementation type for that object—that is, a client of a Clean++ component with a flex
type need not have any information about the implementation(s).

3. It has a class hierarchy that mirrors the structure of the class hierarchy for the implementation types (e.g., if the
implementation includes both a kernel and secondary interface, so does the flex type).

4. Every method in the implementation type has a sibling method in the flex type, the implementation of which is

simply a redirection to the same method in the implementation.3

The flex type pattern closely resembles the “bridge” design pattern, but has several key differences. First, it is
not intended to decouple the implementation from the abstraction—such decoupling is done via C++ abstract classes
on the implementation side. As a consequence, the abstraction (i.e., the flex type) is a concrete class, not an abstract
class. Finally, the flex type has an interface that is always identical to the interface of the implementation. Of course,
the flex type pattern does enjoy several of the benefits of the bridge pattern, most notably the ability to change the
implementation at run-time, over the lifetime of a variable.

A Clean++ component family has a structure similar to figure 1. Because the flex types are the types that a client
will use, Clean++ naming convention dictates that they be named with the canonical name of the component, and
that the implementation type be suffixed with “_imp1”.

4.1 | Flex Types

The primary purpose of including flex types in the stucture of a cleanpp component is to enable polymorphism without
the need for complicated syntax using explicit instances of std: :unique_ptr or calls to std: :make_unique. To this end, a
flex type provides a special initializer to replace the no-argument initializer of the component’s “_imp1” class that takes

one (unused) argument, a variable of the implementation type to be used for this instance of the flex type. Typically,

3The exception to this general rule is that when a component is structured with both a kernel and secondary interface, the secondary methods must additionally
perform a static cast.
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FIGURE 1 Prototypical structure of

a Clean++ software component.

Extends: —» Uses: -—-» |s a Wrapper For: = =

C++class:[] C++ abstract class: ()

A Clean++ Component

Client Program:
cleanpp: :mytype x;
x.foo(...);

. = bar(std: :move(x));

Hidden from Client

»| cleanpp::base

A

> mytype |t ~1»| mytype implementations —»(mytype_implj
n T
________ | DR __________________________%_____I

this argument is provided at the point of the initializer call by way of a call to the no-argument constructor of the

implementing class. Listings 4.1 and 4.2

show some simple client code and a sample flex type.

LISTING 4.1 Client code using cleanpp: :stack.

int main() {
cleanpp::stack<int> s;
s.push (4);
s.push(5);
s.push (6) ;
int x = s.pop();

std::cout << s; // prints "<5

, 4>

LISTING 4.2 Example flex-type for a Clean++ Stack component.

namespace cleanpp {

template<typename Item>
class stack: public base {
protected:
template <typename I>
using _flex_stack_def_t = 1lin
static_assert(std::is_base_of

"_flex_stack_de

std::unique_ptr<stack_impl<It

public:

ked_stack<I>;
<stack_impl<int>, _flex_stack_def_t<int>>::value,

f_tymust deriveyfrom stack_impl<Item>");

em>> rep_;
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stack() : rep_(std::make_unique<_flex_stack_def_t<Item>>()) {
}

template<template<typename> class I>
stack(__attribute__ ((unused)) const I<Item>& impl): rep_(std::make_unique<I<Item>>()) {
static_assert(std::is_base_of<stack_impl<Item>, I<Item>>::value,

"Template parameter I must derive from, stack_impl<Item>");

stack (const stack<Item> &o) = delete;
stack(stack<Item>&& o): rep_(std::move(o.rep_)) {

o.rep_ = std::make_unique<_flex_stack_def_t<Item>>();
}
template<template<typename> class I>
stack(stack<Item>&& o,

__attribute__ ((unused)) const I<Item>& impl): rep_(std::move(o.rep_)) {
static_assert(std::is_base_of <stack_impl<Item>, I<Item>>::value,
"Template parameter Iymust derive fromystack_impl<Item>");

o.rep_ = std::make_unique<I<Item>>();

stack<Item>& operator=(const stack<Item>& o) = delete;
stack<Item>& operator=(stack<Item>&& other) {
if (Zother == this) {

return *this;

}
rep_ = std::move(other.rep_);
other.rep_ = std::make_unique<_flex_stack_def_t<Item>>();

return *this;

}

template<template<typename> class I>

stack<Item>& operator=(stack<Item>&& other,

__attribute__ ((unused)) const I<Item>& impl) {
static_assert(std::is_base_of<stack_impl<Item>, I<Item>>::value,
"Template,parameter I must derive from, stack_impl<Item>");

if (&other == this) {

return *this;

}
rep_ = std::move(other.rep_);
other.rep_ = std::make_unique<I<Item>>();

return *this;

void clear () {
this->rep_->clear ();

}
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virtual void push(Item&& x) {

rep_->push(std::forward<Item>(x));

virtual Item pop() {

return rep_->pop();

virtual bool is_empty() const {

return rep_->is_empty ();

bool operator==(stack<Item>& other) {

return *this->rep_ == *other.prep_;

friend std::ostream& operator<<(std::ostream& out, stack<Item>& o) {

return out << *o.rep_;

};

One important feature of the flex type is that the it identifies a default implementation (line 7 in listing 4.2). The
primary reason for this inclusion is that when the flex class is instantiated, information about the implementation
type is lost. Therefore, when a stack (or other flex type) is move-assigned, because Rule 2 prohibits null references,
a new (empty) stack must be initialized in its place and since this requires a class name, a default type is provided.
It is important to note that the client need not know about this default type—a client can simply declare a variable
of type stack (line 2 in listing 4.1). A drawback to the flex type pattern is that a variable of a flex type might have
its implementation type changed over the course of its lifetime. Of course, this will not affect the correctness of a
program but it might have an impact on performance. When performance is a concern, the client should be aware of
the performance profiles of the implementation options and select appropriately—there is always the option of using
a particular implementation.

A flex type can be easily generated—automatically—from Clean++ components that have both “kernel” and “sec-
ondary” interfaces, as well as for those that provide just one interface. Implementing a flex counterpart for a secondary
interface involves a static cast of the private variable rep_ and while the method bodies in that case have some com-
plex syntax, the client code is exceptionally clean. Because a flex type such at mytype can be automatically generated

from the mytype_imp1 class, a human need not ever look at the “ugly” code in the flex type class.

5 | ILLUSTRATIVE SIMPLE Clean++ COMPONENTS DESIGN AND IMPLEMEN-
TATION

Designing abstract data types (or software components) to support sound local reasoning requires some changes to
the usual way of programming in C++. To illustrate the ideas, this section considers a detailed stack example. We begin
by noting the inherent aliasing difficulties in the interface for stack from the standard template libraries. Two specific

design decisions that complicate modular reasoning are the push() method, which copies a reference and creates an
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alias, and the top() method, which returns an alias to the top of the stack. Minimizing aliases and simplifying reasoning
requires a (minor) interface redesign as discussed in this section.

5.1

As a simple example, we present a class implementation of the type cleanpp: : resource that can be used as the type pa-
rameter to one of the several collectionn-type classes in the Clean++ library. This example serves two purposes. First,
it demonstrates how a non-template type might be implemented in the Clean++ discipline, and second, it provides a

context that should be familiar to C++ programmers—one of resource ownership and transfer thereof.

LISTING 5.1

| Exampe Clean++ Implementation

namespace cleanpp {

class resource_impl:

private:

int i_;

public:

resource_impl (const resource_impl& other)

resource_impl (resource_impl&& other) {

i = other.i_;

other.clear ();

resource_impl& operator=(const resource_impl& other)

resource_impl& operator=(resource_impl&& other) {

if (Zother == this) {
return *this;
}
i_ = other.i_;
other.clear ();
return *this;
}
resource_impl () {
i_ = 0;
}

resource_impl (int i) {

void clear() override {

i_ = 0;

void mutate (int x) {

i_ *= x;

public base {

Implementation of a Clean++ non-template component called resource.

delete;
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5.2 | Implementation with Move Semantics and std::unique_ptr

One way a stack can be implemented is using a linked list of raw pointers, and with it come the potential for aliases
and reasoning complications. With move semantics and std: :unique_ptr, it is possible to create an efficient linked
implementation of a stack while avoiding the reasoning pitfalls that are inherent in raw pointer-based software. Using
std: :unique_ptr everywhere that a traditional linked implementation of a stack would use a raw pointer, the com-
plexity of reasoning required by the traditional implementation can be reduced dramatically while maintaining its
performance characteristics.

However, a move-based stack implementation on its own is not enough to eliminate reasoning difficulties in
software. The type of item contained within the stack must also provide similar benefits. A sample of such a type,
Resource, is shown and implemented in Listing 5.1.

Consider a simple singly-linked list implementation. Since it typically requires no aliases, the “next” pointer of
each node (and the pointer to the first node) can be replaced by a unique pointer. Specifically, a smart pointer type
introduced alongside move semantics in C++ 11, std: :unique_ptr, can be leveraged as a replacement for pointers in
places where a programmer knows a priori that there will be no aliasing, and to prevent unwanted aliasing everywhere
else. A unique pointer enforces at compile time (by the deletion of the copy constructor and copy assignment operator)
that there are no aliases to its contents®.

Furthermore, since the usual behavior of a stack in C++ involves creating aliases to the contents of the stack,
the behavior of a stack in Clean++ will necessarily be different than the behavior of the stack in the C++ standard
library. Specifically, a call to top() on a std: :stack returns an alias to the object at the top of the stack, and a call to
pop () simply discards the object formerly at the top of the stack. The aliasing problem can be solved simply: eliminate
the top() method altogether. But that leaves the question of how to access the object at the top of the stack. The
solution to this is also simple: the pop () operation removes and returns the object at the top of the stack. This behavior
change is relatively small, so developers familiar with the STL stack will not be totally out of their element working
with a Clean++ stack. (Developers familiar with stacks in other languages will immediately be comfortable with this

behavior.)

LISTING 5.2 Code for a linked implementation of the Clean++ stack, making extensive use of std: :unique_ptr.

namespace cleanpp {
template <typename T>
class stack_impl: public base {
private:
class node: base {
public:
T contents;

std::unique_ptr<node> next;
node () : contents (), next() {}

node (T&& new_contents):

4Given the full power of C++, it is technically possible to subvert the guarantee of std:unique_ptr through a convoluted series of pointer manipulations.
However, this process is sufficiently exotic that it is beyond the scope of ordinary software development and extremely unlikely to happen by accident.
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contents (), next() {

std::swap(contents, new_contents);

node (node const &other) = delete;
node (node&& other):

contents (std::move (other.contents)),
next (std::move (other.next)) {

other.clear ();

node& operator=(const node& other) = delete;
node& operator=(node&& other) {
if (&other == this) {

return *this;

}
contents = std::move(other.contents);
next = std::move(other.next);

other.clear () ;

void clear () {
contents = T();
next.reset ();
}
}s

std::unique_ptr<node> top_ptr_;

public:

stack_impl<T>() { }

stack_impl<T>(stack_impl<T> const &other) = delete;
stack_impl<T>(stack_impl<T>&& other):
top_ptr_(std::move (other.top_ptr_)) {

other.clear ();

stack_impl<T>& operator=(const stack_impl<T>& other)
stack_impl<T>& operator=(stack_impl<T>&& other) {
if (&other == this) {

return *this;

top_ptr_ = std::move(other.top_ptr_);

other.clear ();

delete;
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void clear() override {
if (tis_empty()) {
top_ptr_.reset ();

void push(T&& x) override {

top_ptr_ = std::make_unique<stack_node>(std::forward<T>(x), std::move(top_ptr_));

T pop() override {
assert (!is_empty ());
T pop = top_ptr_->contents();
top_ptr_ = top_ptr_->next();

return std::move (pop);

bool isEmpty() const override {

return top_ptr_ == nullptr;

Of particular interest here are the Pop and Push operations. In contrast to the Stack component from the C++
standard library, the Pop operation returns the object that was removed from the stack (there is no “Top” operation).
This is an important decision that enables the elimination of aliases in the Clean++ Stack component because a client
need not first acquire a reference (i.e., an alias) to the item at the top of the stack before removing it. Second, the
Push operation takes as an argument an rvalue reference to the item to be placed at the top of the stack. The primary
consequence of this decision is that the client no longer owns the object they pass to a call to Push. In the client’s
program, the argument is surrounded by a call to std: :move to identify this fact, and after the operation the value of

the argument is an initial value for its type.

6 | MORE ADVANCED Clean++ IMPLEMENTATIONS

6.1 | Implementing New Components By Reusing Existing Ones

A savvy developer can leverage the reasoning benefits provided by one component by reusing it to easily implement
other software components which then exhibit the same nice reasoning properties.

For an example, we consider a reuse of stack component from the previous section. Doubly-linked lists are used
to great effect as the underlying data structure for abstractions such as a list with a cursor, which describes a list in
which the client can insert a new element at the cursor position, remove the element at the cursor position, and advance
or retreat the cursor. Navigating a doubly-linked list in this way is extremely efficient, and the data structure provides
a natural way of doing so. Unfortunately, by their nature, doubly-linked lists rely on aliases. Since alias avoidance is a
key goal of Clean++, it is desirable to implement this data type without any aliases at all.

We can do so using a pair of Stacks, one of which represents the list contents preceding the cursor and the other
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representing the remaining list contents. Advancing or retreating the cursor, then, is done by popping an element from
one stack and pushing it onto the other. Insertion and removal, similarly, are done by pushing and element onto or
popping one from a stack. We showed above that the push and pop operations on stack are efficient. The entire class
takes up about 30 SLOC (see Listing 6.1), and exhibits the desired reasoning characteristics of a Clean++ component.

LISTING 6.1 Animplementation of ListWithCursor built with a pair of Stacks.

namespace cleanpp {
template <class T>
class ListWithCursor: public base {
private:
stack<T> prec_ { };
stack<T> rem_ { };
public:
void advance () {
T x{ };
rem_.pop(x);

prec_.push(x);

void retreat () {
T x{ };
prec_.pop(x);

rem_.push(x);

void insert(T& x) {

prec_.push(x);

void remove (T& x) {

prec_.pop(x);

bool isAtEnd () {

return rem_.length() == 0;

bool isAtFront () {

return prec_.length() == 0;
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6.2 | Implementing Components with Unavoidable Aliasing

Some work has been done recently with respect to verifying behavioral correctness of programs with aliased refer-
ences [20, 21, 22]. The products of this research are somewhat exotic and require language-level primitives, so until
their results are adopted by C++, an alternative is needed in cases where aliases are unavoidable. Such a case is a
linked-list implementation of a Queue, with a pointer to both the head of the list (marking the front of the queue) and
the last node in the list (marking the tail of the queue). The tail pointer is an alias to the next pointer of the second-
to-last node in the list. Eliminating the tail pointer solves the aliasing problem, but incurs unacceptable performance
penalties. Such a queue can be implemented within the Clean++ discipline because no aliases will ever leak to the client,
and thus the soundness of modular reasoning is preserved. Listing 6.2 shows such an implementation.

LISTING 6.2 Alinked implementation of a queue in the Clean++ discipline.

namespace cleanpp {
template <typename T>
class queue: public base {
private:
class node: base {
private:
public:
T contents;
std::shared_ptr<node> next;

node () : contents (), next() {}

node (T&& new_contents):

contents (std::move(new_contents)), next() {}

node (node const &other) = delete;
node (node&& other):
contents(std::move (other.contents)),
next (std::move (other.next)) {

other.clear () ;

node& operator=(const node& other) = delete;
node& operator=(node&& other) {
if (&other == this) {

return *this;

}
contents = std::move(other.contents);
next = std::move(other.next);

other.clear();

return *this;

void clear () {
contents = T();

next.reset ();
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}
};
std::shared_ptr<node> top_ptr_;
std::shared_ptr<node> tail_ptr_;
40 public:
queue<T>(): top_ptr_(), tail_ptr_() { }

queue <T>(queue<T> const &other) = delete;
queue <T>(queue<T>&& other):

45 top_ptr_(std::move(other.top_ptr_)),
tail_ptr_(std::move(other.tail_ptr_)) {

other.clear ();

50 queue<T>& operator=(const queue<T>&% other) = delete;
queue<T>& operator=(queue<T>&& other) {
if (&other == this) {

return *this;

}

55
top_ptr_ = std::move(other.top_ptr_);
tail_ptr_ = std::move(other.tail_ptr_);

other.clear ();
return *this;

60 }

void clear () {
top_ptr_.reset();
tail_ptr_.reset();
65 }

void enqueue (T& x) {

auto new_tail = std::make_shared<node>(std::move(x));
if (tail_ptr_ != nullptr) {
70 tail_ptr_->next = new_tail;
} else {
top_ptr_ = new_tail;
}
// Alias!!
75 tail_ptr_ = new_tail;

void dequeue (T& x) {
std::swap(x, top_ptr_->contents);

80 std::swap (top_ptr_, top_ptr_->next);
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bool isEmpty() comnst {

return top_ptr_ == nullptr;

The similarities to the linked implementation of cleanpp: :stack are significant, with the obvious difference that
std: :shared_ptr is used in places where std::unique_ptr was used before. This difference is because of the alias
introduced at line 75 that is a consequence of maintaining a pointer to the tail of the queue in addition to the head.
Importantly, this alias is never leaked to the client (nor is the null reference indicating the end of the queue). A shared
pointer is used rather than a raw pointer for several reasons: First, to advertise the fact that this variable might have
aliases at any given time, and second to let the C++ compiler manage memory for the programmer.

7 | EVALUATING Clean++

The Clean++ discipline was presented to an undergraduate audience in order to evaluate its efficacy and usability in
two kinds of programs: “client” programs that make use of existing Clean++ software components and “implementa-
tion” programs that comprise the totality of an implementation of a Clean++ software component. Evaluation showed
that the syntactic burden is not overwhelming; it it easy for an undergraduate student to successfully incorporate the
move-semantics related into both kinds of programs. However, it quickly became clear that leveraging an existing
C++ compiler to produce errors when the discipline is violated was crucial to efficient development, which justified
the attention paid to such features from the beginning.

Feedback from evaluation of the discipline informed several descisions in its refinement. To give one example, at
several points during evaluation it was deemed necessary to write a function that both changed the value of one of
its arguments and returned a separate object. However, because move semantics was a key part of Clean++ from the
beginning, this led to the inclusion of Rule 4, by which every method has a return type of std: : tuple.

8 | RELATED WORK

While the reasoning difficulties aliases pose are well-known, efforts to enhance popular programming languages to
keep them under control at the language level have been few and far between. Some efforts have focused on efficient
ways to enrich value types so that they may be used for as much software as possible or on developing disciplines and
style guidelines within popular, existing languages to control and advertise the use of aliases. Other research efforts
have been directed toward the development of entirely new languages built from the ground up to eliminate aliasing
concerns. Ultimately, not all aliasing can be avoided, so admitting aliasing and enabling sound reasoning in its presence
are topics that have received attention in the formal methods literature.

8.1 | The Rust Programming Language

Rust, an open-source programming language project sponsored by Moxzilla, is a relatively new and popular program-
ming language that aims to (and does, in many cases) solve exactly the kind of problems identified in this paper and
addressed by Clean++. However, the motivations for it are related to memory safety, not based in a desire for simple

(abstract) reasoning.
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Specifically, Rust identifies that shared data (e.g., in the form of aliases) is a big problem for compilers. It aims to
solve this problem by introducing a statically-checked system of ownership and borrowing to ensure that immutable
data is never mutated except when the programmer really, really wants that behavior. Rust’s system of ownership and
borrowing have deep implications for alias control in programs and is quite complicated, so it will be discussed only
at a high level here. Ownership in Rust follows a few simple rules:

1. Each value in Rust has a variable called its owner
A value may have only one such owner at a time

3. When an owner goes out of scope, its value is dropped (i.e., its memory is freed)

Assignment in Rust, by default, transfers ownership (i.e., moves) from the right hand side to the left hand side. The
semantics of Rust’s ownership transfer is similar—though not identical—to the semantics of assignment with the sta
: :move operation in C++ (and is quite different than the intended meaning of move in Clean++). The difference is that
in Rust, a compile-time check ensures that no moved variable is subsequently used and C++ makes no such check. In
Clean++, as discussed above, the approach is opposite Rust: values that have been moved from can be used, and their

value is well-defined.

Rust takes a different approach than Clean++ to situations in which shared data is unavoidable. In Rust, a variable
may borrow ownership from another, in which case the second variable is a reference to the first—it does not introduce
an alias on its own (see Figure 2). Borrows may be done mutably or immutably, and the rules for each vary. Overall,
borrowing in Rust follows three rules:

1. There may be either one mutable reference or any number of immutable references in scope
2. A reference must always be valid (the value it refers to must not have been dropped)

3. Assignment may only be done to variables that are not borrowed from

A/_\:Hello" s owns the value “Hello”

8

NN s_ref is borrowing the value
“Hello”

s_ref s owned by variable s
FIGURE 2 Borrowingin Rust

In Clean++, on the other hand, aliasing is advertised through the use of std: :shared_ptr. This enables a Clean++
programmer to quickly recognize those places where aliasing occurs and to be careful when reasoning about them.
Rust’s approach is similar in this regard: shared data is advertised (through the borrowing operator &) when needed so
that the programmer can reason more carefully. However, by virtue of being an entirely new programming language,
Rust is able to offer additional compile-time guarantees beyond what Clean++ is capable of. Specifically, the ownership
and borrowing rules are enforced at compile time. That is not to say that Clean++ is without any copmile-time checks.
Several of the idioms introduced above result in code that is flagged as erroneous by a standard C++ compiler, and

many of the other rules could be statically analyzed by a custom analyzer for Clean++.
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8.1.1 | Clean++ vs. Rust

Because Rust addresses many of the problems identified and addressed by Clean++, it is natural to ask whether
Clean++ has already been made redundant by Rust. The answer is no. First, while Rust is an entirely new language
that requires programmers to learn new syntax, introduces complex new ideas®, and will need to be validiated in large
software projects, Clean++ is simply a discipline of programming in a well-established programming language that
virtually all programmers are familiar with.

Additionally, while Rust provides limited facilities for true object-oriented programming, C++ provides a full suite
of capabilities for building robust, modular, object-oriented programs that make use of abstract data types, polymor-
phism, and inheritance. These capabilities are drawn upon in Clean++ to maintain client-implementer separation and
to encourage the use of many levels of abstraction—things that would, in Rust, be at best difficult and cumbersome
to achieve. For comparison’s sake, the appendix contains a sample component written both in Clean++ and Rust.

Finally, Rust’s solutions to many of the problems addressed in this paper are framed in terms of memory manage-
ment and memory safety—not ease of reasoning. This does not mean that Rust’s fixes do not improve reasoning (they
do), but it does mean that in some cases Rust may not go “far enough” toward easy reasoning to make it amenable
to automated formal verification. We believe that Clean++ does, since it is inspired directly by verification-focused
languages such as RESOLVE [17]. By including comment-based formal contracts, it is believed that programs written

from the ground up in Clean++ could be automatically verified to be correct.

8.2 | Google’s Stylistic Suggestions for Writing Good Code in C++

Google’s style guide [23] offers extensive guidance on how to write good C++ code, from variable naming conventions
to high-level structuring. Several sections address themes directly related to this paper.

Of most relevance to the topic is the advice on “Ownership and Smart Pointers”. In this section, an argument is
made as to why having a regimented discipline for expressing ownership (beyond simple pointers) is a Good Thing in
C++ programs. The stylistic suggestion made in the guide is to “prefer to keep ownership with the code that allocated
it,” and when ownership transfer is necessary, to use std: :unique_ptr to make such transfer explicit.

Two other sections, “Copyable and Movable Types” and “Rvalue References” are also closely related to the dis-
cipline proposed in this paper. Google's C++ style guide recommends that a class be either copyable or movable or
neither, but not both copyable and movable except in certain situations. The justification given for this rule is that
having a copyable class that is also movable is a potential source of bugs because the expected (i.e., copying) behavior
of parameter values or return values might not actually occur. The guide argues that defining moving operations on
a copyable class should be viewed strictly as a performance optimization and so should not be used unless there is a
clear performance improvement for doing so. The section on rvalue references makes the recommendation that rvalue
references be used in overloaded function pairs (one taking a const& and the other a «& argument). Again, the crux of
the decision is that rvalue references and move semantics should be viewed strictly as a performance optimization.
Minimizing aliasing and simplifying reasoning are not considered in the discussion.

5The ownership system alone has been the topic of discussion for several weekly meetings of a group of university professors and PhD students...and it still
is not completely understood by all of them.
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8.3 | Rich, Efficient Value Types and Apple’s Swift

One typical solution to the aliasing problem offered by modern programming languages is the introduction of rich and
efficient value types that, when assigned, copy the variable’s entire value to the destination.® The obvious advantage
of value types in the context of this paper is that aliases are never introduced, thus enabling simpler reasoning. Unfor-
tunately, frequent copying has the potential to be quite costly for large types. This has led some languages to impose
rules on what may be done with variables of value types.

For example, Apple's newest programming language, Swift [24], offers a rich toolbox for creating value types
(called structs). However, value types in Swift are immutable by default and the compiler attempts to restrict value
types from being mutated without additional annotations. The reason for this limitation is that structs in Swift are
copied lazily (sometimes called “copy-on-write”), so making them immutable allows Swift to offer equivalent perfor-
mance in value-based code as it does in reference-based code (except in rare cases where a struct is mutated). Imple-
menting lazy copying at the language level ensures that structs are used in contexts where they are not mutated and

encourages programmers to consider using value types where appropriate.

8.4 | Functional Languages and Immutable Data

A key insight of functional languages is that the exclusive use of immutable data can eliminate a whole class of reason-
ing problems. Immutable types, of course, are not limited to functional languages; as mentioned above, value types
in Swift are immutable by default. Functional languages’ exclusive use of immutable types is what makes them so
attractive as reasoning-focused languages[25]. While functional programming has its benefits, the focus of this paper

is on developing practical principles for C++.

8.5 | Pointer-Free Programming in ParaSail

As mentioned in the introduction, recent work by Tucker Taft on ParaSail [13] addresses several of the issues raised
in this paper, but in the context of a new language. ParaSail was developed with two complementary goals in mind:
pointer-free and parallel programming. These two goals are complementary because reasoning in the presence of
parallelism is made significantly more complicated when aliases are introduced—indeed, parallel programs often rely on
data sharing between threads in the first place, so introducing unnecessary aliases makes things much worse. ParaSail
unifies pointer-free and parallel programming idioms by permitting the sharing of data across threads explicitly only
in cases where it is intended. Everywhere else there are no aliases.

8.6 | Language Design to Prevent Aliases

Beyond ParaSail, there have been attempts to design programming languages keeping in mind the principles discussed
in this paper. In particular, RESOLVE [17, 26] has been used in large-scale efforts to automatically verify the full
functional correctness of imperative programs. RESOLVE, an integrated specification-programming language, was
designed with clean semantics; that is, there are no references in RESOLVE and, thus, no aliases. Every variable is
reasoned about using its abstract value. Furthermore, by employing a swapping paradigm at the language level [10], a
variable in a RESOLVE program is guaranteed to be the sole owner of its data at any given time, and copying is rare.

These two factors combine to make it relatively simple to reason about programs written in RESOLVE because many

SAt least, this is the client’s view of what is happening. Some types, such as immutable ones, need not be copied entirely.
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of the low-level memory management details can be abstracted away. This is perhaps the central contribution of the
RESOLVE project: a recognition that if every pointer points to a distinct thing, then there is no need to reason about
pointers at all.

RESOLVE design principles have been proposed for developing software in C++ and Java. These prior solutions
aim to “simulate” RESOLVE-style programming in these popular languages, and do not leverage move semantics or
other C++ 11 features. Zaccai, in his PhD thesis, discusses the challenges to automated verification in Java which stem,
primarily, from aliased references (and arguments) [9]. Hollingsworth, et al, build relatively large-scale software using
a dialect of C++ called RESOLVE/C++ [16]. Their work has validated that certain formal methods principles—such as
the ones presented here—can be applied at scale in real software.

8.7 | Object Ownership Systems

One popular approach to dealing with aliases in a software verification context is object ownership systems [27, 28,
29, 2]. Such systems impose a structure and restrictions the heap and force programs to behave a certain way; in
particular, behavior in which aliases are managed properly. Ownership systems are cast as extensions of typing and
are therefore checkable by relatively simple static analyzers.

8.8 | Specification and Verification with Aliasing

This paper has presented a discipline in which aliases are largely avoided at all costs, primarily through extensive use
of std: :unique_ptr. However, as discussed briefly above, data sharing—including aliasing—is occasionally unavoidable.
The challenge in software verification (i.e., reasoning) involving objects, aliasing, and properties about the heap is well
recognized in the literature [7, 8].

A variety of efforts have addressed the verification challenge, but if aliasing is minimized, then reasoning will
be simplified when using any of the approaches, including ones based on separation logic [3, 30, 31, 32], dynamic
frames[33, 34, 35, 36, 37, 38], or region logic[39]. Verification efforts based on devising and reusing concepts in
which a set of locations (an abstraction of addresses) is “shared” [20, 21, 22] will also be simplified. The discussion
in [20] also contains a solution to avoid the classical parameter aliasing problem on calls with repeated arguments, a

solution that can be realized in C++ with move semantics.

9 | FUTURE WORK

Clean++ is a developing entity, so there are a number of avenues for work in Clean++. For example, at present,
Clean++ does not have provisions for concurrent programming. Validating automatically that Clean++ code adheres
to the discipline remains an important goal. Finally, there are avenues for exploration in how Clean++ can be used to
simplify and teach formal reasoning in a potentially more familiar environment for students than current reasoning-

focused languages and tools.

9.1 | Concurrency

The Clean++ discipline does not immediately support using components in concurrent contexts. Specifically, the

claim was made above that “passing by reference does, of course, introduce an alias (since the calling program and
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the method body both hold references to the same object), but it not a dangerous one because the aliased references
are never in scope at the same time.” This claim is clearly not true for parallel programs, but in such cases the sharing
of data is not only unavoidable but actually desired. Discussion of extending Clean++ to support parallel programs is
a topic for further research; such development is a natural consequence of current research of the authors [40, 41]
and others [13].

9.2 | Automated Clean++ Validation

The Clean++ discipline, as presented here, is rigid enough in many respects that a static analyzer could be developed
to check automatically that code adheres to several of the core ideas.

There are several aspects of the discipline that would be relatively easy to check and others that could prove
more challenging. Specifically, it would be trivial to check for any raw pointers and warn the programmer if any are
found. If a smart pointer other than std: :unique_ptr Or std: :shared_ptr is found, a warning would also be dispatched
suggesting that the programmer employ one of these two “acceptable” types. Ensuring that all user-defined types
delete the copy constructor and assignment operator and have replaced them with a move constructor and move
assignment operator would not be difficult. Finally, any instances of null reference “leakage” to the client could be
caught with only a moderatlely sophisticated static analysis.

Challenges to automating Clean++ validation include ensuring that the no-argument initializer actually creates an
object with a valid initial value. Options for enabling this kind of sophisticated analysis include employing comment-
based specifications regarding abstraction and initial values. In most cases, default initializers are straightforward
and the computation of the abstract value generated by such a method, given an appropriate specification, could be

achieved.

9.3 | Education

The benefits afforded by Clean++ code make it a good candidate to be a tool for teaching formal reasoning to CS
students. In Clean++, a programmer explicitly advertises the moving behavior of components and forces the client to
use rvalue references for arguments to component methods. Thus, she never needs to reason about the possibility of
aliases—every object always has a unique owner. This is a huge benefit, especially to students who are only beginning
to learn about programming.

Another benefit of the strictness of the Clean++ discipline with regard to the ease of reasoning is that many
pieces of code that introduce aliases are flagged as erroneous by any C++ compiler, as long as the programmer is
using Clean++ components. This feature alone could help beginning students see how to write programs that avoid
aliases, and to develop an understanding of the mechanisms of data transfer that are used in many of today’s popular

programming languages.

10 | CONCLUSIONS

Despite the common view of move semantics as a purely performance-improving trick, there is significant potential for
move semantics to be broadly applied in large software projects not only to improve performance but also to simplify
reasoning and, thus, increase the robustness of software systems. The discipline presented here, Clean++, is only part

of what is required to reap all of the benefits of clean semantics in C++ software. Clean semantics and its associated
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reasoning benefits can be realized through judicious—and careful—use of C++ move semantics and std: :unique_ptr.
Future efforts involve tool development to assist and simplify such software development.

Repository of Clean++ Components

A small proof-of-concept library of software components has been written in the Clean++ discipline to demonstrate
its utility, flexibility, and efficiency. The library is available on the authors’ GitHub [42].
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A | OBJECT-ORIENTED PROGRAMMING IN RUST VS. Clean++

Consider a simple type, called Natural that is modeled by the natural numbers N and is unbounded (this is similar to
a “Big Integer” found in libraries for many languages). Our implementation, however, will be represented by a single
unsigned long (Orue4 in Rust) for the sake of simplicity, so it is bounded in reality. Keep in mind while reading this that

an alternative implementation (e.g., based on a stack) could be employed to make it unbounded.

LISTING A.1 Relatively small program approximating the kind of modular component design preferred by
Clean++ in Rust.

pub mod natural {

const RADIX: i64 = 10;

pub trait NaturalNumberKernel {
fn multiply_by_radix (&mut self, digit: i64);
fn divide_by_radix (&mut self, digit: &mut i64);
fn is_zero(&self) -> bool;

fn clear (&mut self);

pub trait NaturalNumber: NaturalNumberKernel {
fn increment (&mut self) {
let mut last_digit = 0;
self.divide_by_radix (&mut last_digit);
last_digit += 1;
if last_digit == RADIX {
last_digit -= RADIX;
self.increment () ;
}
self .multiply_by_radix(last_digit);

fn decrement (&mut self) {

let mut last_digit = 0;

self.divide_by_radix (&mut last_digit);

if last_digit == 0 {
last_digit += RADIX;
self.decrement () ;

}

last_digit -= 1;

self .multiply_by_radix(last_digit);

fn set_from_i64 (&mut self, mut n: i64) {
self.clear () ;
if n > 0 {
let d = n % RADIX;
n /= RADIX;
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self.set_

self .mult

pub fn add(lhs: &mut
let mut lhs_last
let mut rhs_last
lhs.divide_by_rad
rhs.divide_by_rad
lhs_last += rhs_1
if lhs_last > RAD

from_i64 (n);
iply_by_radix(d);

Box<dyn NaturalNumber >,

= 0;

= o0;
ix (&mut lhs_last);
ix (¢mut rhs_last);
ast;

IX {

lhs_last -= RADIX;

lhs.increment
}
if !rhs.is_zero()
add (1hs, rhs)
}
lhs.multiply_by_r
rhs.multiply _by_r

pub fn subtract (lhs:
let mut lhs_last
let mut rhs_last
lhs.divide_by_rad
rhs.divide_by_rad
lhs_last -= rhs_1
if 1lhs_last < 0 {

O

{

B

adix (lhs_last);
adix (rhs_last);

&mut Box<dyn NaturalNumber>,

= 0;
= 0;

ix (&mut 1lhs_last);
ix (&mut rhs_last);

ast;

lhs_last += RADIX;

lhs.decrement
}
if !rhs.is_zero()
subtract (1lhs,
}
lhs .multiply_by_r
rhs.multiply_by_r

pub struct Bounded {
n: i64,

impl Bounded {
pub fn new() -> B
Bounded { n:

(O

{
rhs);

adix (lhs_last);

adix (rhs_last);

ounded {
02

&mut Box<dyn

NaturalNumber>) {

Zmut Box<dyn NaturalNumber>) {
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impl NaturalNumberKernel for Bounded {

fn multiply_by_radix (&mut self, digit: i64) {
self.n *= RADIX;
self.n += digit;

}

fn divide_by_radix (&mut self, digit: &mut i64) {
xdigit = self.n J RADIX;
self.n /= RADIX;

¥

fn is_zero(&self) -> bool {
self.n == 0

}

fn clear (¢mut self) {
self.n = 0;

impl NaturalNumber for Bounded {
fn increment (&mut self) {

self.n += 1;

fn decrement (&mut self) {
self.n -= 1;
}
fn set_from_i64 (&mut self, n: i64) {

self.n = n;

fn main() {

LISTING A.2 The Clean++ version of the Rust “natural” component above. (#include statements are elided.)

use natural::{add, Bounded, NaturalNumber};

let mut n: Box<dyn NaturalNumber > = Box::new(Bounded::new());

n.set_from_i64(42);

let mut m: Box<dyn NaturalNumber > = Box::new(Bounded::new());

m.set_from_i64(21);
add (&mut n, m);
// n = 63, m = 21
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* File: natural_number_kernel.hpp

namespace cleanpp::natural

{

class natural_number_kernel:

public:

static const int RADIX

virtual bool is_zero()

public clean_base {

10;

03

virtual void multiply_by_radix(int digit) = 0;

virtual void divide_by_radix(int &digit) = 0;

namespace cleanpp::natural

{

class natural_number: public natural_number_kernel {

public:

virtual void increment ();

virtual void decrement () ;

virtual void set_from_int(int n);

}s

void add(std::unique_ptr<natural_number> &x, std::unique_ptr<natural_number> &y);

void subtract(std::unique_ptr<natural_number> &x, std::unique_ptr<natural_number> &y);

}

* File: natural_number.cpp

namespace cleanpp::natural {

void natural_number::increment () {

int d = 0;

this->divide_by_radix(d);

d++;
if (d == RADIX) {
d -= RADIX;

this->increment ();
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}
this->multiply_by_radix(d);

void natural_number::decrement () {
assert (!is_zero());
int d = 0;
this->divide_by_radix(d);

d--3
if (d < 0) {
d += RADIX;
this->decrement ();
}

this->multiply_by_radix(d);

void natural_number::set_from_int (int n) {

assert(n >= 0);

if (n == 0) {
this->clear ();
} else {

int nlLeft = n / RADIX;
this->set_from_int (nLeft);

this->multiply_by_radix(n % RADIX);

void add(std::unique_ptr<natural_number> &x, std::unique_ptr<natural_number> &y) {

int x_low;

x->divide_by_radix(x_low);

int y_low;

y->divide_by_radix(y_low);

if (ly->is_zero()) {
add(x, y);

}

x_low += y_low;

if (x_low >= natural_number::RADIX) {
x_low -= natural_number::RADIX;
x->increment () ;

¥

x->multiply_by_radix(x_low);

y->multiply_by_radix (y_low);

void subtract(std::unique_ptr<natural_number> &x, std:

int x_low;

x->divide_by_radix(x_low);

:unique_ptr<natural_number> &y) {
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int y_low;
y->divide_by_radix(y_low);
if (ly->is_zero()) {
subtract(x, y);
}
x_low -= y_low;
if (x_low < 0) {
Xx_low += natural_number::RADIX;
x->decrement () ;
}
x->multiply_by_radix(x_low);
y->multiply_by_radix (y_low);

namespace cleanpp::natural {

bounded_nn::bounded_nn(int n): n(n) {};

bounded_nn::bounded_nn(bounded_nn&& other): n(std::move(other.n)) {

other.clear ();

bounded_nn& bounded_nn::operator=(bounded_nn&& other) {

if (&other == this) {

return *this;

this->n = other.n;
other.clear ();

return *this;

bool bounded_nn::operator==(const bounded_nn &other)

return this->n == other.n;

void bounded_nn::clear () {
this->n = 0;

¥

bool bounded_nn::is_zero() {

return this->n == 0;

{
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}

void bounded_nn::multiply_by_radix(int d) {
this->n *= RADIX;
this->n += d;

}

void bounded_nn::divide_by_radix(int &d) {
d = this->n % RADIX;
this->n /= RADIX;

void bounded_nn::increment () {

this->n++;

void bounded_nn::decrement () {

this->n--;

void bounded_nn::set_from_int(int n) {

this->n = n;

* File: main.cpp

using namespace cleanpp::natural;

int main() {
std::unique_ptr<natural_number> n = std::make_unique<bounded_nn>();
n->set_from_int (42);
std::unique_ptr<natural_number> m = std::make_unique<bounded_nn>();
m->set_from_int (21);
add(n, m);
// n = 63, m = 21

The Rust version of this program mirrors the structure of its counterpart in Clean++, however there are some im-
portant differences. First, whereas std: :unique_ptr<T> is used to ensure unique ownership in Clean++, Rust provides
the Box<T> type to denote unique ownership of dynamic data structures. The two types are similar in more ways than
not, and for our purposes they are interchangeable when it comes to reasoning except for the fact that Rust provides
some memory safety guarantees that are not present in Clean++ with std: :unique_ptr<T>. Second, while C++ permits
a class to have a variety of intializers with varying parameter lists, Rust does not permit such function overloading (in

fact, initializers in Rust are not special; they are simply regular functions with the conventional name “new”).



