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Abstract. The specific focus of this paper is on specification-based
proof rules for parallel operation calls to facilitate modular verification.
The rules proposed are novel in that they raise and address the follow-
ing complications, without compromising soundness or relative complete-
ness: situations where operation specifications are relational, situations
when preconditions for only some serializations might hold, and situa-
tions where a software developer explicitly lists the serializations to be
considered to minimize what needs to be verified. The paper also con-
tains a sketch of a soundness proof, and illustrates the ideas and rules
with examples.

1 Introduction

As computing hardware becomes ever more parallel, the importance of making
sure software written for it is correct—and the difficulty thereof—becomes in-
creasingly obvious. It is well-known to software developers that writing, testing,
debugging, and maintaining parallel software is exponentially harder than do-
ing so for sequential software of similar scale. The interaction of various threads
with one another cause problems to manifest unpredictably, frustrating tradi-
tional testing and debugging techniques. Therefore, for high confidence systems,
ideally software should be verified to be correct with respect to its specification.
Moreover, verification needs to be done in a modular fashion, one component
at a time, in order to be scalable. For modular verification, parallel programs
should be composed from components encapsulating data abstractions.

There are many active projects that are working towards a solution to the
larger parallel program verification problem. Broadly speaking, there are three
main areas of formal methods research that are closely related to this work.

1. Verification of full functional correctness of programs that make use of rich
data abstractions. Such research is usually applied to sequential programs
because of complications to concurrency introduced by abstraction.
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2. Verification of full functional correctness of concurrent programs. Most of
this research is dedicated to verifying the correctness of programs that make
use of concurrency primitives or other low-level software components.

3. Verification of a limited set of properties (such as safety, termination, or
data race freedom) of concurrent and parallel programs. Frequently, this
research deals with programs that do not make use of data abstractions but
occasionally encompasses higher-level programs. Efforts in this space are
employed either at compile-time or run-time.

Substantial work appears in any one or at the intersection of any two of these
research areas. For example, the intersection of (1) and (3) includes work that
uses data abstraction in concurrency, but only verifies certain properties of those
programs. The focus of our larger project is at the intersection of all three areas,
that is, the automated and formal verification of full functional correctness of
parallel programs with rich data abstractions.

To achieve the larger objective of modular verification, the present paper
focuses on a step-by-step approach for development of a proof rule for operation
calls. One complication arises when the precondition for only one of the many
possible serializations may be true, and another when specifications of some of
the operations reused in the program are relational. Such specification of rela-
tional behavior, when multiple outputs are specified as possible for a given set
of inputs, arises routinely, for example, in the description of optimization prob-
lems. The complication here is that when these are parallel programs, not only
must the formal reasoning deal with the possibility of nondeterminism being
introduced by the parallel execution itself, but also by the specificational inde-
terminacy of the operations that are called. Yet another complication is perhaps
the most obvious in that just too many serializations will have to be considered
in the verification process. The proposed rules handle operations calls with non-
trivial preconditions and relational behavior, and allow a software developer to
dictate if a small subset of serializations (instead of every one) can be considered
in verification.

2 Related Work

2.1 Verification of Correctness of Sequential Programs

One central challenge in sequential, object-oriented software verification involves
objects, aliasing, and properties about the heap [15, 28]. Separation logic is an
extension of Hoare’s logical rules to address these challenges. Examples of verifi-
cation using separation logic in Coq include [6, 5] and in VeriFast to verify Java
and C programs include [11, 12]. Automating verification with separation logic
is the topic of [2, 4, 24, 25] and others.

2.2 Verification of Correctness of Concurrent Programs

Some of the foundational ideas in the verification of concurrent and parallel
programs were introduced by Owicki and Gries in their seminal paper [23]. It
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provides foundations for using Hoare logic to verify the partial correctness of par-
allel programs in a simple parllel programming language. As with most research
in this domain, Owicki and Gries prove the correctness of parallel programs at
an extremely low level (e.g., at the level of locks and semaphores, with variables
being simple integers), without regard for data abstraction.

In addition to verifying the correctness of sequential programs, separation
logic has been used to some effect for concurrent programs. Concurrent sepa-
ration logics have expanded the capabilities of (sequential) separation logic by
adding rules for reasoning about concurrent programs [22]. An important new
direction for abstraction in concurrent separation logic is the focus of [14].

In [17], Leino discusses the joining of specification statements, and provides
a brief discussion of the joining of specification statements in the face of par-
allelism. Specifically, the join operator 4 in [16] is the least-refined statement
that refines both (all) of the parallel statements, and is similar in spirit to the
construction of the proof rules here.

2.3 Verification of Certain Properties of High-Level Programs

Much of the work in the verification of concurrent programs is focused not full
functional correctness, but rather on specific properties (e.g., memory safety,
termination, data race freedom) hold.

In Deterministic Parallel Java [3] (DPJ), regions are defined explicitly by the
programmer. These annotations allow a DPJ compiler to guarantee, statically,
that two concurrent operations are data race free and thus will produce a de-
terministic result. ParaSail [33] is a new programming language that relies on
value semantics to verify that concurrent statements are non-interfering.

Both the above approaches are limited by what can be syntactically checked,
and ParaSail in particular is limited by the fact that objects are not subdivided
into regions that can be reasoned about independently.

The determinism guarantees in this work and others amount to showing data
race freedom, though the present approach deals with high-level programming
constructs. There is a large body of work on showing low-level race freedom,
including both static approaches [7, 20, 1, 10, 9, 19, 13] and dynamic ones [27, 26,
8, 29]. Like DPJ and ParaSail, these are limited to guaranteeing some level of
determinism and do not claim to formally verify full functional correctness.

3 Context and Background

The context for the present work is RESOLVE [31, 30], an integrated program-
ming and specification language that enables verification of full behavioral cor-
rectness of sequential software components to encapsulate rich data abstractions
[31]. RESOLVE specifications use an extensible collection of mathematical mod-
els and they allow alternative implementations. Verification of code that uses
components proceeds in a modular fashion, using only the specifications of those
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components. Given code annotations, such as invariants and pre- and postcon-
ditions, code verification is mostly automated, and there have been efforts to
build easy-to-use tools to use it for verified software [30, 36]. The present effort
builds on this prior work in sequential software verification.

In particular, this work is focused on fork-join parallel programs, wherein
several threads are spawned at some point, each to perform a unit of work
(called the parallel section), and the main thread does not continue until all of
its children have finished their work (i.e., at the end of the parallel section).
This execution model does simplify some aspects of this work, but it does not
restrict its utility—the results from this paper could be generalized to a number
of different distributed and parallel computing execution models.

3.1 Abstractions to Simplify Reasoning

In RESOLVE (as in other sequential verification languages), the specification for
a data abstraction (called the concept) is decoupled from its implementations.
A concept contains a math model, which is a purely mathematical interpretation
of the data type. An implementation (called a realization) provides a mapping
from its concrete state to the abstract state based on that math model. In turn,
the concrete state of a realization is based on the abstract values of its fields.

We consider a specification of trees. One way to capture a linked tree struc-
ture in the heap in separation logic is by the use of predicates, such as the one
below [21]:

tree(E, τ)⇐⇒ if (isAtom?(E) ∧ E = τ) then emp

else ∃xyτ1τ2.τ = 〈τ1, τ2〉 ∧ (E 7→ [l : x, r : y] ∗ tree(x) ∗ tree(y)),

Predicate definitions as abstraction in separation logic, while powerful and nec-
essary in verifying an underlying tree implementation, ideally would be shielded
through a data abstraction specification to enable reasoning about code based
solely on the abstract value of an object, rather than its implementation. In [18],
for example, a “shared” Tree is modeled mathematically without implementa-
tion details and operations allow navigation of a tree and manipulation of its
contents. The specification makes no reference to underlying linked structures
used in implementing the trees, so it is possible to view trees in mathematical
terms for the purposes of reasoning of client code. One-time verification of tree
implementations do require non-trivial reasoning [32] as in the case of using sep-
aration logic, but that reasoning is compartmentalized within implementations.

3.2 Specifications of Operations with Functional and Relational
Behavior

There are two classes of operations we consider when writing these proof rules:
operations with functional specifications, and those with relational specifica-
tions. Functional operations have exactly one possible output for any given input
(e.g., the operation Dequeue() in the listing below). Relational operations, on
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the other hand, might have several possible outputs for a given input (e.g., the
operation InsertAnywhere() below). Here, a Queue is conceptualized as a mathe-
matical string (similar to a sequence), so the pre- and postconditions are written
in terms of operations on mathematical strings: |q| is the length of string q, 〈x〉
is the singleton string containing the entry x, ◦ is the concatenation operator,
and q[a, b) is the substring of q beginning at index a and ending the entry before
index b.

operation Dequeue(updates q: Queue, replaces x: Item)
requires |q| > 0;
ensures #q = 〈x〉 ◦ q;

5 operation InsertAnywhere(updates q: Queue, clears x: Item)
ensures ∃(i)(q = #q[0, i) ◦ 〈x〉 ◦#q[i, |#q|));

If all of the operations in the parallel section of a program have functional
specifications and there are no data races, then the order of their execution can-
not matter—any serialization of those operations must result in the same output,
and that output is the result of any given sequential execution of those oper-
ations. In the case of relational specifications, the semantics are less clear. For
example, consider what happens when the two operations in the listing above
are run in parallel (assume they are data race free). If we take the serialization
Dequeue(q, x); InsertAnywhere(q, y), we can conclude, at a minimum, that the
element removed by Dequeue is not the element added by InsertAnywhere. How-
ever, if we take the other serialization (that is, InsertAnywhere(q, y); Dequeue(q,
x)), we have that the element removed by Dequeue might in fact be the element

added by InsertAnywhere. Proof rules related to these lines of reasoning are
found in Sections 4.1 and 4.2.

3.3 Reasoning About Non-Interference Between Threads

When a parallel program executes, there is the possibility that several threads
might try to write to the same memory location during the parallel section (or,
one thread might read a memory location that another writes). When such a
situation (known as a data race) occurs, we say the threads are interfering, and
the execution of the program is not “safe” because a data race can introduce
nondeterminism to the output. Most fork-join parallel algorithms rely on having
a deterministic output (e.g., array summation, searching a tree), so it is desirable
to enforce determinism statically, at verification-time.

Our prior work on showing the non-interference of parallel operations relies
on the use of a novel notion of non-interference contracts [35]. A non-interference
contract divides the abstract state of an object into partitions, which are disjoint.
The non-interference contract then provides effects clauses for each operation;
it provides a partition mode for each partition of this non-interference contract
(one of affects, preserves, or ignores).

A client of a non-interference contract uses effects clauses to establish that
several parallel calls to operations which share parameters are non-interfering by



6 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

showing that any partition which is in affects-mode in one operation is ignored
by all others in the parallel block. Importantly (for preserving abstraction),
partition modes may be conditional on the abstract value of a parameter.

On the implementation side, it must be shown that every method body actu-
ally respects these partition modes. To facilitate this, the programmer provides
an interference correspondence which places each concrete field (or, more specif-
ically, each partition of each concrete field) of the component into one of the
(abstract) partitions provided by the non-interference contract this implemen-
tation is said to respect. Membership of a concrete field in a partition may be
conditional on the abstract values of the concrete fields of the component.

A deeper introduction to non-interference contracts and how they ensure
data race freedom can be found in [34, 35].

4 Modular Proof Rules for Safe Parallel Execution

The current phase of this work deals only with non-interfering processes—
that is, processes that are data race free. In the programs we examine, non-
interference comes in several flavors. First, two processes are non-interfering if
they share no variables in common. This is surprising, of course, because it fails
to account for aliasing of references. However, because RESOLVE has clean se-
mantics (each variable is the unique owner of whatever memory it refers to),
the need to deal with aliases is eliminated in all but the most complex of cases,
which are dealt with separately [32]. Second, two processes are non-interfering
if they do share a variable, but it is only read from—not written to—by both
processes. A read-only variable is denoted by the preserves parameter mode in
RESOLVE. Finally, two processes can be non-interfering even when they share
and modify a variable through the use of non-interference contracts [35]. Two
threads are non-interfering (according to a non-interference contract) if every
partition that is affected by one thread is ignored by the other.

When two parallel threads do not interfere with one another (i.e., they have
no data races), their execution is equivalent to a serialization of their constituent
instructions. In fact we can say something stronger, that their execution is equiv-
alent to all possible serializations of their constituent instructions. That is, when
reasoning about the behavior of a parallel section of a program, its behavior is
entirely deterministic (absent explicit nondeterminism in the specification or im-
plementation). This insight allows us to simplify proof rules for parallel programs
to make it easy and fast to verify their correctness.

We use the notation S1 ‡ S2 to mean “S1 is non-interfering with S2”.

4.1 Operations with Functional Specifications

When the specifications of operations inside the parallel section of a program are
functional, the semantics of their concurrent composition is somewhat trivial—
at least when the operations are non-interfering. For an informal proof of this
statement, consider that if there are no data races (that is, there is no part of
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memory that is written to by more than one thread, nor is read by a thread if
it is written to by another) between the two overall operations, then any two
constituent instructions comprising the operations could be executed in either
order and still produce the same program state. Therefore, no matter which
interleaving of these instructions we choose (the actual execution of these oper-
ations might “choose” any of them), the resulting state of the program will be
the same. So we have that the concurrent composition of some data race free op-
erations is exactly equivalent to any of the sequential compositions of the same
operations (all of which are equivalent to each other). Therefore, the proof rule
for the concurrent composition of (two) non-interfering operations with func-
tional behavior is identical to the proof rule for the sequential composition of
those operations (here named P and Q).

operation P(preserves x: T1, updates y: T2)
ensures y = F (x,#y);

operation Q(preserves x: T1, updates y: T2)
5 ensures y = G(x,#y);

cobegin
P(u, v);
Q(u, v);

10 end;

{Pre}P (u, v);Q(u, v){PostPQ} P (u, v) ‡Q(u, v)

{Pre}P (u, v)‖Q(u, v){PostPQ} (1)

In our notation for proof rules, we define PostPQ to be the postcondition of the
sequential piece of code P (u, v);Q(u, v). When P and Q are as specified above,
PostPQ ≡ y = G(x, F (x, y0)).

When operations with functional specifications are composed in parallel, be-
cause all possible interleavings (including both serializations of the operations)
result in the same state of the program, it is sufficient to consider just one of
those interleavings and use it to verify our program. Specifically, we consider the
serialization of the two operations in the order they are listed in the program.

4.2 Operations with Relational Specifications

Operations with relational specifications complicate verification considerably,
but not insurmountably. Consider the argument provided above in Section 4.1
that no matter which interleaving of the operations is chosen at runtime, the
output will be identical because they are data race free. We can use this in-
formation to conclude something stronger about the concurrent composition of
several non-interfering relational operations than we could about any of their
sequential compositions. Specifically, the proof rule for the parallel composition
of (two) non-interfering operations with relational specifications (here named P
and Q) is as follows, provided the calls to P(u, v) and Q(u, v) are non-interfering.
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operation P(preserves x: T1, updates y: T2)
ensures PostP (x,#y, y);

operation Q(preserves x: T1, updates y: T2)
5 ensures PostQ(x,#y, y);

cobegin
P(u, v);
Q(u, v);

10 end;

{Pre}P (u, v);Q(u, v){PostPQ}
∧{Pre}Q(u, v);P (u, v){PostQP }

P (u, v) ‡Q(u, v)

{Pre}P (u, v)‖Q(u, v){PostPQ ∧ PostQP } (2)

That is, consider both (or, in the general case, all) possible sequential orderings
(in this case P (u, v);Q(u, v) and Q(u, v);P (u, v)) of the operations. The output
of their concurrent execution is a state that is reachable by both (all) of them.

Perhaps unsurprisingly, when P and Q are both functional, an application of
the relational proof rule is equivalent to an application of the functional proof
rule because, as shown below in Section 4.4, non-interfering statements neces-
sarily commute (so PostPQ ≡ PostQP ).

4.3 Operations with Differing Preconditions

Conspicuously absent from the proof rules (1) and (2) are a discussion of pre-
conditions for the operations in a parallel section. In part, this is because the
properties to be established before a parallel section are perhaps counterintuitive.

To formulate the proof rule for the parallel composition of statements with
differing preconditions, first we augment the specifications of P and Q:

operation P(preserves x: T1, updates y: T2)
requires PreP (x, y);
ensures PostP (x,#y, y);

5 operation Q(preserves x: T1, updates y: T2)
requires PreQ(x, y);
ensures PostQ(x,#y, y);

The following proof rule describes the semantics of the parallel execution of
two non-interfering statements with differing preconditions:

{PrePQ}P (u, v);Q(u, v){PostPQ}
∧{PreQP }Q(u, v);P (u, v){PostQP }

P (u, v) ‡Q(u, v)

{PrePQ ∨ PreQP }P (u, v)‖Q(u, v){PostPQ ∧ PostQP } (3)
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Similar to PostPQ, PrePQ is the weakest precondition (according to the
specification) that must be satisfied before verification of the sequential code
P (u, v);Q(u, v) can proceed.

That is, either (any) of the preconditions for the serializations must be met
in order to conclude both (all) of the postconditions. This can result in surprising
behavior. Consider the following two non-interfering operations for Natural, the
programming type that is modeled by the natural (i.e., non-negative) numbers:

operation Increment(updates n: Natural)
ensures n = #n+ 1;

operation Decrement(updates n: Natural)
5 requires n > 0;

ensures #n = n+ 1;

The parallel composition of these two statements operating on the same
variable might look like the following:

cobegin
Increment(n);
Decrement(n);

end;

Applying various rules for sequential composition of statements, we have the
following two Hoare triples representing the semantics of each serialization:

{true}Increment(n); Decrement(n){n = n0}
{n0 > 0}Decrement(n); Increment(n){n = n0}

When Increment(n) and Decrement(n) are non-interfering3, the semantics of
their parallel execution based on (3) is as follows:

{true}Increment(n)‖Decrement(n){n = n0}

The execution of one of the serializations has a nontrivial precondition n > 0
while the other one has the trivial precondition true; by proof rule (3), the
precondition for their parallel composition therefore is true. But the scheduler
might (“demonically”) choose to execute these two operations in exactly the
order Decrement(n); Increment(n), and a violated precondition would result.
However, because of the non-interference of these two statements, the resultant
state of the the program must be identical whether the scheduler chose that
serialization, the other one (with the precondition true), or even an arbitrary in-
terleaving of the instructions comprising the two operations. Therefore, it can be
assumed that the scheduler made an “angelic” choice—that is, the serialization
Increment(n); Decrement(n).

3 An implementation of the type Natural for which the operations Increment(n) and
Decrement(n) are non-interfering is left as an exercise to the reader.
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Example Application of Proof Rule. As an example, consider the following
operation specifications and cobegin statement (which is correct according to
the proof rule). For now, we assume the statements are non-interfering.

operation AddAnEnd(updates q: Queue, clears x: Item)
ensures q = #q ◦ 〈#x〉 ∨ q = 〈#x〉 ◦#q;

operation RemoveAnEnd(updates q: Queue, replaces x: Item)
5 requires |q| > 0;

ensures #q = q ◦ 〈x〉 ∨#q = 〈x〉 ◦ q;

assume q = 〈10, 20, 30〉 ∧ u = 4;
cobegin

10 AddAnEnd(q, u);
RemoveAnEnd(q, v);

end;
confirm

(q = 〈4, 10, 20〉 ∧ v = 30)∨
15 (q = 〈20, 30, 4〉 ∧ v = 10);

First, the precondition for either serialization is met by these initial condi-
tions, so we can proceed. The reachable states for the two possible serializations
of these operations are in Table 1.

Serialization Reachable States

AddAnEnd(q, u);
RemoveAnEnd(q, v);

q = 〈4, 10, 20〉 ∧ v = 30

q = 〈20, 30, 4〉 ∧ v = 10

q = 〈10, 20, 30〉 ∧ v = 4

RemoveAnEnd(q, v);
AddAnEnd(q, u);

q = 〈4, 10, 20〉 ∧ v = 30

q = 〈20, 30, 4〉 ∧ v = 10

q = 〈4, 20, 30〉 ∧ v = 10

q = 〈10, 20, 4〉 ∧ v = 30

Table 1. Reachable states for the two orderings of AddAnEnd(q, u) and
RemoveAnEnd(q, v), with matching ones highlighted.

The intersection of these two sets of states are exactly the confirm statement
in the listing above:

q = 〈20, 30, 4〉 ∧ v = 10

q = 〈4, 10, 20〉 ∧ u = 0 ∧ v = 30
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4.4 Sketch of Proof of Soundness

The full proofs of soundness of these proof rules are lengthy (due to the scaffold-
ing needed to talk about high-level semantics), so we give a sketch of the proof
here. The are a few key concepts behind this proof. The first is clean semantics,
a property of a programming language which prohibits aliasing and ensures that
any two distinct variables in scope refer to distinct portions of memory. The
second is that a given state of memory (or concrete state of a variable) abstracts
to a single value.4

We define an operation as a sequence of actions, each of which “targets” a set
of partitions (here, a partition is simply a unique set of memory locations). The
partitions are either preserved (read from) or affected (written to) by an action.
The definition of non-interference can be framed in these terms: two operation
calls are non-interfering if there is no partition that is an affected target of some
action of one operation that is either an affected or preserved target of any action
in the other operation.

Given two actions aO1 and bO2 of non-interfering operation calls O1 and
O2, we know that there is no memory location that is written to by one action
that is read from or written to by the other (because otherwise these operations
calls wouldn’t be non-interfering). Therefore, if memory starts in some state
S, and the state of memory after executing actions aO1 followed by bO2 is S′,
and the state of memory after executing actions bO2 followed by aO1 is S′′, then
S′ = S′′. Thus, the state of memory does not depend on what order these actions
are executed in, so we can assume either one.

This can be generalized to encompass the entirety of the operations O1 and
O2: the state of memory will be identical no matter what interleaving of the
operations’ constituent actions actually happens at run time. Because a given
state of memory abstracts to a particular value (or set of values, if an abstraction
relation is involved), the set of possible abstractions of memory, then, is the same
no matter what interleaving actually happens at run time. Therefore, because
the state of memory after the concurrent execution of two non-interfering actions
must be a state that is reachable by all possible interleavings (including either
serialization), its abstraction must also be reachable by all possible interleavings.

Therefore, if there are two calls to operations with relational specifications
that are non-interfering, it must be the case that the state of the program after
their concurrent execution is one that is reachable by both serializations; hence,
the relational proof rule (2) is sound. The functional proof rule (1) is a special
case of the relational proof rule, so it is also sound. The justification for the
weakened precondition is given alongside rule (3).

4 RESOLVE also has provisions for abstraction relations where a single concrete state
maps to some set of abstract values rather than a single value. Whenever in the
course of the proof this possibility needs accounting for, it is mentioned.
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4.5 Conditional Non-Interference

The effects in a non-interference contract might be conditional on the abstract
values of parameters, in which case the actual non-interference of several state-
ments might also be conditional on those values. The proof rule for such a situa-
tion is a complication of the proof rules presented so far. Consider the operations
P and Q, augmented with viable effects clauses (suppose a variable of type T
has two partitions, a and b).

operation P(updates x: T)
affects x@a;
when GP (x) affects x@b;
requires PreP (x);

5 ensures PostP (#x, x);

operation Q(updates x: T)
affects x@b;
when GQ(x) affects x@a;

10 requires PreQ(x);
ensures PostQ(#x, x);

Parallel calls to these operations are non-interfering only when ¬GP (x) (oth-
erwise, both statements affect x@b) or ¬GQ(x) (otherwise, both statements af-
fect x@a). A proof rule with support for conditional effects must include these
guards in its assessment of a valid precondition for the parallel composition of
the statements.

{PrePQ}P (u);Q(u){PostPQ}
∧{PreQP }Q(u);P (u){PostQP }

GPQ ⇒ P (u) ‡Q(u)

{GPQ ∧ (PrePQ ∨ PreQP )}P (u)‖Q(u){PostPQ ∧ PostQP } (4)

When the effects of operations are conditional, the non-interference of two
statements is determined by the abstract values of the arguments before the
parallel section.

Soundness of Conditional Non-Interference. This proof rule is sound given
the non-conditional version is sound. If GPQ is satisfied, then P (u) ‡Q(u), and
the rule reduces to the non-conditional version.

5 Specialization: Considering Subsets of Serializations

5.1 A Single Serialization

It should be noted that while rule (2) is the strongest proof rule for operations
with relational specifications that can be derived from the guarantees made by
non-interference, it is not the only useful one. For example, an alternative to the
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relational proof rule is one where only a single serialization is considered (P and
Q are as defined in Section 4.2):

{Pre}P (u, v);Q(u, v){C} P (u, v) ‡Q(u, v)

{Pre}P (u, v)‖Q(u, v){C} (5)

The weaker rule is useful because of a surprising fact: employing the strong
rule (2) breaks the relative completeness of our proof system. Consider the exam-
ple above with the two operations AddAnEnd and RemoveAnEnd, and the im-
plementation of the operation DoubleRotate below. Conceptually, DoubleRotate
“shifts” the queue two entries either forward or backward.

operation DoubleRotate(updates q: Queue, updates x: Item);
requires 1 < |q|;
ensures(
〈x〉 = (#q ◦ 〈#x〉)[1, 2) ∧ q = (#q ◦ 〈#x〉)[2, |#q|) ◦#q[0, 1)

)
∨

5

(
〈x〉 = (〈#x〉 ◦#q)[|#q| − 1, |#q|)∧
q = #q[|#q| − 1, |#q|) ◦ (〈#x〉 ◦#q)[0, |#q|)

)
;

procedure
var y: Item;
cobegin

10 AddAnEnd(q, x);
RemoveAnEnd(q, y);

end;
AddAnEnd(q, y);
RemoveAnEnd(q, x);

15 end DoubleRotate;

If AddAnEnd and RemoveAnEnd are non-interfering, this is a correct imple-
mentation of the operation as specified. It is correct because any non-interfering
implementations of those operations would necessarily operate on opposite ends
of the queue. Further, the implementations used couldn’t possibly change over
the course of the body, so the two calls to AddAnEnd on lines 11 and 14 must
necessarily operate on the same end of the queue. However, with the proof rule
for the cobegin statement presented in Section 4.2 in conjunction with the proof
rule for sequential exeuction (for lines 14 and 15), the verifier could not prove
this procedure body correct. The difficulty here is the fact that the verifier does
not (and cannot, if the locality of reasoning is to be preserved), use in its verifi-
cation of the sequential portion of the code the additional information afforded
to it by virtue of the non-interference of the two operation calls.

Clearly, the procedure body above would not verify with rule (5), either.
However, under the semantics presented in this section (that is, the concurrent
execution of two non-interfereing operations is identical to their sequential com-
position in the order in which they are written), the procedure body is not, in
fact, correct (and cannot be proved so), while under the semantics based on (2)
it is a correct body, and still it cannot be proven correct. Hence, the stronger
proof rule does not preserve relative completeness while the simpler one does.
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Rule (5) is identical to the proof rule introduced above for operations with
functional behavior. This is an additional practical benefit to employing the
weaker rule over the strong one, (2). Since the two proof rules are identical,
the need to determine whether a particular operation has functional or rela-
tional specifications (itself an undecidable question) is eliminated. Ultimately,
determination of a proper rule may require additional discussion, analysis, and
possible experimentation.

5.2 Consideration of Subsets of Serializations

Efficiently automating reasoning about parallel code poses a core challenge: as
the number of operations inside the cobegin block grows, the number of pos-
sible serializations to consider in the relational case grows extremely fast. To
automate this reasoning process, then, clearly we need a shortcut or heuristic to
approximate the results from this exponential explosion of possibilities. The pro-
posed solution is to allow the programmer to limit the number of interleavings
that should be considered for automated verification through an annotation. For
example, consider the following parallel block of code:

cobegin
P(x);
Q(y);
R(z);

5 S(w);
end;

There are 24 possible sequential orderings of the statements in the code above.
5 That means a verifier would, in effect, have to verify the same piece of code
24 times! This is clearly not scalable, so we introduce a considering annotation
which is followed by a set of sequential orderings that should be considered to
extract enough information from the composition of these operations to prove,
e.g., a procedure’s postcondition. Suppose that the programmer can determine
(through manual reasoning of their own code) that considering only the written
ordering and its reverse will allow the verifier to conclude what it needs. Then,
the programmer-annotated cobegin block would look like the following.

cobegin
considering <1, 2, 3, 4>, <4, 3, 2, 1>

1: P(x);
2: Q(y);

5 3: R(z);
4: S(w);

5 Of course, even considering just the serializations of the operations is an approxi-
mation, because it does not take into account “interleavings” of the internal code
for these operations wherein the first instruction of P is executed, then the first in-
struction of Q, and so on. Accounting for interleavings not only would cause further
explosion but would also violate the principles of abstraction and modularity.
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end;

The considering annotation here tells the verifier, “use only the information
you can conclude from the serializations P(x); Q(y); R(z); S(w); and S(w); R(z);
Q(y); P(x); in proving the correctness of this program.” Such an annotation can

prevent an exponential buildup of possible serializations to consider while still
affording the verifier additional information from the non-interference of threads
when it is applicable.

Soundness of the Considering Annotation. Because the “full” proof rule
(2) above requires showing the conjunction of the reachable states of all possible
serializations of a cobegin statement’s constituent operations, and since that is
sound, any rule derived from the considering annotation is also sound, since
the conjunction of several clauses implies each of those clauses (and any sub-
conjunction of them).

6 Conclusions and Future Directions

Verifying the correctness of high-level concurrent programs is a challenging prob-
lem, made more complex by relational specifications for operations. The proof
rules presented here provide a sound, relatively complete step toward the verifi-
cation of fork-join parallel programs which make use of data abstraction.

The proof rules presented here are client-side proof rules; that is, the imple-
mentation is disregarded and assumed to be correct. However, the implementa-
tion must also be proven correct with respect to its specification (in this case, its
non-interference contract). In RESOLVE, a realization destined for concurrency
provides a non-interference correspondence that maps the concrete state to the
partitions defined in its interference contract. In particular, the non-interference
correspondence maps partitions of concrete fields to partitions of the interfer-
ence contract, and the verification that a particular procedure body respects the
effects in the interference contract proceeds based only on (a) the behavioral
and non-interference specifications of the constituent statements and (b) the in-
terference correspondence. If the effects clause is met by all procedure bodies in
the realization, then the non-interference contract can be used with confidence.

The technique presented here can be extended and generalized to encompass
parallel iteration and parallel programming styles beyond fork-join. However,
work is ongoing to explore how to achieve tractable verification in these situations
while maintaining the abstraction and modularity properties discussed herein.

Specifically, it is likely that non-interference contracts will need to be aug-
mented to handle more complicated situations (e.g., atomic, owns, or locks/un-
locks annotations to deal with various concurrency models, and segmented par-
titions to handle parallel loops and more complex data abstractions).

The rules presented here will be used to implement a cobegin statement in
the RESOLVE programming language.
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