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Abstract—This paper presents techniques to detect the offline
activity a person is engaged in when she is tweeting (such
as dining, shopping or entertainment), in order to create a
dynamic profile of the user, for uses such as better targeting
of advertisements. To this end, we propose a hybrid LSTM
model for rich contextual learning, along with studies on the
effects of applying and combining multiple LSTM based methods
with different contextual features. The hybrid model is shown
to outperform a set of baselines and state-of-the-art methods.
Finally, this paper presents an orthogonal validation with a real-
case application. Our model generates an offline activity analysis
for the followers of several well-known accounts, which is quite
representative of the expected characteristics of these accounts.

I. INTRODUCTION

Precise real-time targeting of advertisements is essential to
the success of online advertising. Social media platforms are
able to build rich profiles from the online presence of users by
tracking activities such as participation, messaging and website
visits. The important question we seek to address in this paper is,
“Can we tell what the user is actually doing when she tweets?”
For example, is she dining, watching a movie, or studying in
a library? By knowing the activities of a user, such as whether
they visit restaurants or travel frequently, more precisely targeted
advertisements and marketing strategy can be directed to them.

Social media posts of users are primarily driven by their
interests. Extracting these interests from posts has been quite
successful [1], [2]. We now seek to unearth the offline activities
that the user is engaged in when she posts, because these can
provide a close to real-time view into the user. As an example,
building interest profiles may tell us that a user likes watching
movies, so ads related to certain types of movies may evoke
her attention. However, being able to detect offline activities
can tell us that a user is watching a movie right now, so ads
related to popcorn and beer may be immediate appeal. In other
words, knowing the activity a user is engaged in can enable very
effectively targeted advertising.

TABLE I
SAMPLE TWEETS WITH REPORTED LOCATIONS
[ Content [ Location |  Activity

1 | Just Landed in Looondon Airport Traveling

We’ve been trapped in London . .
2 for 12 hours Airport Traveling

7T

3 Ready @Tomlovestorunl? I’'m Airport Traveling

not so sure
4 | Happy national tequila day! Night Club | Entertaining

Detecting a user’s activity from a tweet could be difficult. To
illustrate this, Table 1 shows a set of sample tweets along with
their reported locations and their assigned activity labels. The

keyword “landed” in Tweet 1 is sufficient to identify the correct
location of the user (airport) and her activity (traveling). Tweet 2
needs some inference to understand the situation of its author —
being stuck in a major transportation center. This situation can still
be extracted from the content of the tweet. Tweet 3 contains no
information at all of its activity — travelling. Further, a naive model
may identify the activity of Tweet 4 as dining, because the tweet
talks about a drink; however, the author is actually entertaining
at a nightclub. In fact, we have observed that it is quite common
to post tweets with content that may clearly indicate one type of
activity, while the author is actually engaged in a different type
of activity.

In other words, these examples show that the semantic content
of a social media post does not, by itself, always provide
meaningful information related to the activity that the author is
engaged in while posting. Additionally, user-reported locations
are very useful in determining such activities. For example, [3]—
[5] have shown correlation between activities and the check-in
locations of the posts. However, very few tweets contain such
location information.

Our goal is, therefore, to build a model that is able to recognize
user activities not only for the cases where a clear indicator exists
in the content, but also for the ones where the activity information
is latent and not directly usable. Therefore, the model should work
without the help of author-provided location information.

Continuing the motivation for this work, it should be clear that
for tweets 3 and 4, their content alone is not sufficient to extract
the correct offline activity, and additional context knowledge is
needed. For example, the additional knowledge of post time of
tweet 4 (midnight) dramatically increases the possibility that the
author is being entertained at a night club rather than eating
at a restaurant. The historical information is another contextual
information. Thus, knowing that a post prior to tweet 3 is about
heading home allows us to infer that the author sent this post while
traveling. Thus, we posit that in order to recognize offline activity,
a richer contextual model is required, consisting of additional
background information.

To show that such inference can be handled effectively, this
paper focuses on the following research questions:

e How can we identify and appropriately label the offline
activities of tweets?

e What contextual information (i.e. other than the content)
assists in recognizing activities?

o How can we effectively recognize user activities using the
contextual features?

We address these questions through novel techniques as well
as enhancements to existing techniques. We start by using a
Long Short-Term Memory (LSTM) network [6] to model only
the content of tweets. LSTM is designed to handling sequential
data, and it has been shown to provide a reasonable performance



on tweet classifications [7]-[9]. To further improve the model,
we explore and analyze the inclusion of other contextual features
with different variations of LSTM model. Based on the analysis
and comparison, we propose a hybrid LSTM model that properly
handles the contextual features to improve the outcome. For
evaluation, we create a labeled dataset by collecting tweets where
users have reported their location. For the activity classification
task, our proposed model is able to reduce the error by 12%
over the content-only models and 8% over the existing contextual
models.

Finally, this paper presents an orthogonal validation towards
the proposed hybrid model with a real-case application. Our
model forms an analysis towards the activities of the followers
of several well-known Twitter accounts, and the analysis demon-
strates strong relationships to the expected characteristics of these
accounts. To the best of our knowledge, this is the first work that
seeks to recognize offline activities using a author-independent
model. It is also the first work that looks into and compares
different LSTM based models with respect to their abilities to
work with contextual features.

II. RELATED WORK

User profiling on social media has been a popular area, and
it is useful for personalization, recommendation, and advertising.
Research has been conducted on user profiling based on the posts
and interactions between the users. Rao et al. [10] use linguistic
features to profile users to extract gender, age, regional origin, and
political orientation. Lee et al. [11] build a user profile model
based on certain types of words to improve new recommenda-
tions. Certain efforts [12]-[14] characterize users based on their
online communication and web-page visiting activities. Detecting
life events [15], [16] from tweets has also been addressed.

The problem of inference and prediction of real-life activities
of users has not received much attention. So far, there are mainly
two types of works on the extraction of offline activities of
users: recognition of the current activity (activity recognition)
and prediction of a future activity (activity prediction). Activity
prediction considers all features as historical data, while activity
recognition focuses on current activities. Early works on activity
prediction [5], [17], [18] relies on the history of check-in locations
provided by the user. Later, [3] and [4] add temporal information
to the analysis of activities given location data. None of the work
utilize the post content of the users, which is the major focus
of our models. Weerkamp et al. [19] predict future activities by
summarizing tweet topics where a future time frame is mentioned.
To recognize the current activities, Song et al. [20] build a
framework that incorporates the similarity measurement between
the bag-of-word based classifiers of different users by comparing
the decisions of the classifiers. It assumes that friends on social
platforms are related in their activities. Relation in user interest
is quite common among friends, however, offline activities do not
necessarily hold the same assumption. In contrast, our belief is
that contextual information provided by the same author is more
relevant in recognizing offline activities.

For the task of text mining, LSTM [6] has been widely used for
modeling sequential data. Greff er al. [21] perform a comparison
across eight content-based LSTM variants, and demonstrate that
these variants only have limited improvements. To improve the
performance, Bi-directional LSTM (BiLSTM) [22] and LSTM
with a Convolutional Neural Network (CNNLSTM) [23] are
introduced to capture more appropriate information. Recently,
attention mechanisms are added to LSTM [24], [25] to strength
the ability of handling long-dependencies. In order to incorporate
external information, Ghosh et al. [26] build a contextual LSTM
model that adds the contextual feature into the calculation of

each gate function. Yen er al. [15] utilize a multi-task LSTM
and include contextual information by simply concatenating the
features. Finally, hierarchical LSTM models are built [7], [27]
that stack LSTM models with different levels of sequential data.
In general, the effectiveness of each model is highly reliant on
the input data and features; thus, none of the models appear good
enough to work with all types of contextual data. We look into the
capabilities of several contextual models with respect to different
contextual features, and come up with a hybrid model that takes
advantage of the success of these models.

III. WORKING WITH CONTEXTUAL FEATURES USING LSTM

In this section, we first describe the process of creating and
assigning activity labels to tweets. Then we show the work on
exploring several models that are built based on LSTM to include
contextual features.

A. Activity Labeling

Similar to the labeling approaches of [5] and [20], we design an
automatic labeling process that uses the reported location of the
tweets to assign labels. The reported location is highly predictive
to the activities of the tweet. Essentially, we categorize locations
and use predefined rules to map locations to activities. Note
that we also create additional mapping rules to overcome errors
brought by locations that could be involved in multiple activities.

B. Contextual Learning with LSTM

A typical approach to improve model performance is to include
additional, and hopefully, more useful features. We therefore look
into several popular LSTM-based models that used contextual
features including static features such as time of post, sequential
features such as part-of-speech (POS) tags, and historical features
such as the most recent tweets from the same author. The
sequence of POS tags helps to better understand the content,
beginning with the positioning of words; while the timing of
the post and historical tweets may be able to provide useful
background knowledge of the target tweet. Because the goal of the
system is to provide real-time recognition of activities associated
with a given target tweet, we only utilize tweets posted prior to
the target tweet. We do not include the topics of the tweet since
they have been shown to be ineffective in past studies [28] [29].

1) Original LSTM: Sequential models such as LSTM and
Gated Recurrent Unit (GRU) [30] are ideal for text processing,
because they consider the order and dependencies of tokens. Since
LSTM and GRU have comparable performance, we use LSTM
as the baseline to improve by including contextual features.

A simplified architecture of the LSTM model used for a text
classification problem is shown in Figure 1. The output of the
embedding layers is a sequence of vectors that represent the input
sequence. LSTM outputs a flat vector representation for the entire
input sequence, and it is fed into another layer to generate the
classification output. For our activity recognition task, the tweet
content is the input and the activity label is the output.
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Fig. 1. LSTM for Text Classification

2) Joint-LSTM: Similar to the idea of Yen et al. [15], we
design Joint-LSTM (J-LSTM) model to concatenate the flat
representations of the sequential input of content and contextual
features before feeding it to the output layer.

Figure 2 shows an example design of Joint-LSTM model. The
sequence of part-of-speech tags and the post time of the tweet
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Fig. 2. Joint-LSTM for Text Classification

shown in the figure are the direct contextual features which have
direct relation with the target tweet. The POS tag sequence is
generated from the word sequence, and it is fed into the model
using embedding and LSTM layers. Post time is a feature that is
closely related to offline activities. We treat it as a sequence of
size 1 to be able to use it flexibly in multiple models. It turns out
that there is little difference in terms of the overall performance
between this approach as compared to other approaches such as
directly feeding the time into a dense layer. In addition, the J-
LSTM model in Figure 2 also includes historical tweets. They
are modeled similar to the target tweet, and they share the same
embedding layer with the target tweet. Since the concatenation
happens to the flat representation of the input sequences, J-LSTM
suffers from the weakening of sequential information for the
contextual and content features.

3) Contextual-LSTM: Ghosh et al. [26] propose a Contextual
LSTM (C-LSTM) model to handle contextual information. They
directly add the contextual feature to the decision function of each
gate, as shown in the following equations.

it = o(Wayixe + Whihe—1 + WeiCr—1 + by + WgiE)
ft =o(Wypxe + Wyphy 1 +WepCp1 + by + WgE)
¢t = fiCi1 + istanh(WeeCy + be + Wi E)

ot = 0(Waomt + Whohi—1 + Weoct + bo + WEE)

ht = ottanh(ct)

where i, f and o are the input, forget, and output gates,
respectively, z is the input, c is the cell memory, b is the bias, h
is the output, and E is the contextual features.
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Fig. 3. Contextual-LSTM for Text Classification

The implementation of C-LSTM turns out to be quite simple. It
concatenates the embedded sequences of the contextual features
with the embedded sequence of the content, and the concatenation
is sent to an LSTM layer. Figure 3 shows an example of C-
LSTM model that takes POS sequence, post time sequence, and

historical tweets as contextual features. To properly form the
concatenation with all the input embeddings, static features such
as post time are duplicated and transferred into a sequence of
the same value. Using the same input and embedding settings as
the J-LSTM model, the embeddings of the target tweet content
and the contextual features are concatenated before sending to the
LSTM layer. Therefore, it is straightforward to see that C-LSTM
requires the contextual features to have certain relationship with
the content at every timestep.

4) Hierarchical-LSTM: Existing Hierarchical LSTM (H-
LSTM) models such as [27] are mainly used to model contents
at different levels of details. In addition, Huang et al. [7] use the
structure to incorporate social context such as retweets and replies.
In contrast, we utilize a similar H-LSTM structure, but include the
historical tweets from the same author in a chronological order.
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Fig. 4. Hierarchical-LSTM for Text Classification

Figure 4 shows the structure of the H-LSTM model. Each
LSTM segment on the individual level handles a single tweet
sequence. The input to the sequence level LSTM is a propagation
of historical tweet representations where the first one being the
oldest tweet and the last one being the target tweet. Since the
tweet representations in the sequence level are formed in a
chronological order, the sequence can be modeled to learn the
historical background towards the activity label of the target tweet.
To further help utilize the historical tweets, we also add a self-
attention mechanism [31] to the LSTM on the sequence level. All
tweet contents share the same embeddings across the model. The
hierarchical structure strictly limits the type of features that can
be used, therefore tests on other contextual features such as post
time and POS tag sequence result in disappointing performances.

IV. OUR PROPOSED HYBRID-LSTM MODEL
A. Including Historical Tweets

In this section, we first analyze the three popular models
described in the previous section with respect to their ability to
incorporate contextual features. Based on the analysis, we propose
a hybrid LSTM model to better support rich contextual learning.

We conduct a comparison on a development dataset using
J-LSTM, C-LSTM, and H-LSTM with features of POS tag
sequence, post time, and historical tweets. Details on the con-
struction of the dataset will be covered in the experiment section.
These features are used to explore a more general conclusion for
the capability of the contextual models. The accuracies shown in
Figure 5 and 6 are weighted averages across all labels to handle
the imbalanced dataset. In addition, Table II lists several sample
tweets that will be used in the ensuing analysis.

Figure 6 shows the use of three models in handling the most
recent 5 historical tweets. We test with different numbers of
historical tweets, and found that the relative performances of
different models are similar. Tweet 1 in Table II was posted
while watching a baseball game, and the author only posts
baseball related tweets. It is surprising that H-LSTM has the worst
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TABLE II
SAMPLE TWEETS FOR MODEL ANALYSIS

Nice day for a game. Less nice was Warren’s first inning.
Biggest flag I've seen in person. Very cool. #NeverForget #911
We made it. #BEmediaday

The wait is over! #GreatBarrierReef #Ashes #GoldCoast

£ W | =

performance as the structure is designed specifically for historical
data. It cannot recognize the correct activity for Tweet 1 either.
Attention mechanism aims to handle historical information more
appropriately, but it does not help generate any improvement. The
utilization of chronological order in including historical tweets
may not be applicable to activity recognition on the target tweet.
In other words, the habit of posting tweets may not form a
chronological dependency chain across historical tweets.

C-LSTM incorporates historical information by a step-wise
concatenation of the tweet sequences. We believe that historical
tweets have hidden information related to the target tweet, but
such information is unlikely to be effectively captured in a word-
to-word style. Similar to C-LSTM, J-LSTM does not carry any
order information. The merging of the information for J-LSTM
happens at the level of entire tweets. So it relies on the sharing of
the complete information among historical tweets. Due to the fact
that the historical tweets of Tweet 1 also contain a lot of baseball
related words, J-LSTM and C-LSTM are able to recognize the
correct activity of Tweet 1. In addition, the historical tweets of
Tweet 2 are very diverse in terms of the length, topic, and writing
style. Therefore, C-LSTM is not able to filter the noise while J-
LSTM still works by combining the complete information. Based
on this analysis, we think that a simple combination of complete
recent tweets could better support the classification of the target
activity.

B. Including Direct Contextual Features

Since H-LSTM is introduced to include historical tweets, we
only apply J-LSTM and C-LSTM to the contextual features of
POS tags and post time (Figure 5). In general, C-LSTM performs

better in handling both features. Since it is designed to incorporate
features at each step of the input sequence, it generates a larger
improvement with step-wise features such as POS tags. When
dealing with static features like post time, it adds the same
information to the gate decision for each input step of the content
sequence. On the other hand, J-LSTM incorporates this contextual
information to the representation of the entire target tweet.

Tweet 3 is relatively short, but the post time of 6:19 a.m.
would help to recognize the activity of traveling. Meanwhile,
after segmenting the hashtags in Tweet 4, knowing the tokens are
proper nouns definitely help understand the author is traveling to
Australia. For both tweets, C-LSTM performs better by including
the contextual information more accurately with the correspond-
ing words. Therefore, with deeper and more precise incorporation
at each timestep, C-LSTM is more suitable in handling direct
contextual features.

C. Hybrid-LSTM

The analyses above show that historical features are better
handled by concatenation at the flat representation level and direct
contextual features work better with step-wise concatenations. In
order to handle rich contextual learning that includes different
types of contextual features, we propose a hybrid LSTM model
(HD-LSTM) based on the analysis above. HD-LSTM aims to
cover a wide range of contextual features, and utilize different
modeling layers for different contextual features. With the ca-
pability of various layers in incorporating certain features, HD-
LSTM is able to reach a better performance by handling the
contextual features more appropriately.
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Fig. 7. Hybrid-LSTM for Text Classification

Figure 7 shows a sample design of HD-LSTM that takes text
input, along with contextual features of historical information,
POS tag sequence, and post time. In particular, for each tweet
component shown in the dashed box, the content sequence and
the direct contextual features are combined with a concatenation
of their embeddings. In each dashed box, post time is used to
mark the moment when the tweet was written, while POS tag



TABLE III
SAMPLE TWEETS AND MODEL PREDICTIONS

Content True / Hybrid LSTM w/ Hist w/ POS&T
1 | Breakfast of champions Traveling Dining Traveling Dining
I guess the word has gotten out about E’s ... so crowded today Dining Shopping Dining Dining

3 | Last time I was here was pretty sad. #BaptistHospital Enhancement Enhancement | Entertaining | Enhancement

sequence helps understand how each word was actually used
in the tweet. Then the enriched sequential representation is fed
into a LSTM network and generates a flat vector representation
for the tweet component. At this step, each LSTM module
learns the representation for the semantic, syntactic, and temporal
information of the tweet. Next, the enriched flat representations
for all tweets are concatenated to form a larger representation
that contains the information from all inputs. This concatenation
further includes the historical information of the target tweet to
improve the overall understanding of an enriched background.
Finally, the concatenated vector is fed into the output layer and
generates the result label.

The features that belong to the same type across all tweet
components share the same embedding. In our case, all tweet
content sequences, POS tag sequences, and post time share the
same embeddings respectively. To further boost the proposed
hybrid model, we also add self-attention to all involved LSTM
layers.

D. Illustrative Examples

Table III lists several examples from the development set to
show the effect of including contextual features in recognizing
activities, and the success of the proposed hybrid model. We use
LSTM to show the performance of using content only, use J-
LSTM to apply historical tweets, use C-LSTM to include both
POS tags and post time features, and use Hybrid LSTM to
combine all these contextual features.

Tweet 1 shows a strong relation to breakfasts, however, the true
situation is that the author took a photo of a sandwich while he is
waiting at an airport. It is reasonable that using the tweet content
leads to a decision of “dining” activity, and it holds the same even
if the post time is considered. Meanwhile, the most recent two
historical tweets from the author talked about leaving the hotel
and arriving at the airport. Thus, including the historical tweets
become very useful in recognizing the correct “traveling” activity.
Tweet 2 describes a situation where the author is surrounded by
many people. With only this clue, it is possible that the author was
shopping at a mall, having a dinner, or waiting at a train station.
Given the post time as 12:07 p.m. on a Sunday, it increases the
possibility of having a meal, and the model is able to make the
correct decision. In fact, the true activity of the author is dining in
a cafeteria, and “E” is the name of the place. Since “E” is a very
unusual name for a cafeteria, it becomes hard for content only
model to utilize this information. In addition, recent tweets from
the author talk about having fun with friends, which also helps
determine the correct activity. Tweet 3 has a strong indicator that
the author is at a hospital, and the content only model can generate
the correct output. However, including only the historical tweets
results in an incorrect result of “entertaining”. Several historical
tweets are talking about drinking wine, which could mislead the
historical model. Those historical tweets are all posted at night,
while the post time of the target tweet is early in the morning.
Considering this, the hybrid model is able to give the correct
decision by distinguishing the different topics between the target
tweet and the historical tweets.

V. EXPERIMENTAL RESULTS

In this section, we describe our experiments that explore the
performance of different LSTM based models, focusing on com-
paring their abilities of incorporating contextual features towards
a tweet classification task. As we have stated throughout, the
contextual features include POS tag sequence and post time of a
tweet, as well as the most recent historical tweets from the same
author. Though author identity has been proved to be helpful
in many tasks [32], [33], we do not include it since it could
potentially create a strong bias to the model and it is not general
enough towards ordinary inference tasks.

A. Data preparation

Manual labeling, though normally desirable for supervised
learning, was problematic for labeling tweets with activities for
the following two reasons. First, humans are good at recognizing
surface meaning, especially for the case that no background and
external information are required. Thus, manual labeling suffers
from the same problem showed by the examples described in the
first section. The activities that cannot be inferred from the content
itself are unlikely to be correctly labeled by humans. Second,
labeled dataset of sufficient size was highly desirable, as the size
of the training data is highly related to the quality of the model.
Although there are certain ways to crowdsource the labeling
process, obtaining sufficient labeled tweets with consistent quality
seemed infeasible. Therefore, we label the activities based on the
reported locations.

We started the data collection from defining a list of place
categories that are strongly related to certain activities. Then we
used Google Maps API to collect specific places for each category
with detailed coordinates. Finally, we used Twitter API to collect
tweets that are posted with a reported location, which is also in
a range of 10 meters from the coordinates of a specific place.
We removed duplicates and only included the tweets that have
reported location type as Point of Interest (POI). POI indicates
that an activity can be conducted at this location [5]. To further
clean the data, we removed tweets that contain less than 3
tokens or more than 70% of the tokens are mentioned usernames.
Hashtags are useful elements in tweets, and sometimes they can
be strong indicators for locations or activities. However, such use
of hashtags may also lead to overfit the model, and the uniqueness
of creating hashtags makes it less useful towards unseen ones. To
prevent this problem while preserve the meaning, we removed
the hashtag signs and segmented the hashtag content so that the
hashtags are separated into ordinary words.

Table IV shows the relationship between the predefined place
categories and activities. As mentioned, additional rules are used
to improve the labeling quality, such as tweets that have noun
keyword “ceremony” at location “stadium” should be labeled as
“enhancement”.

Although the data collection process is initialized with the
same amount of requests for each activity type, it results in
an imbalanced dataset. In our test, down-sampling or over-
sampling the dataset does not show any considerable difference
in the overall performance. Therefore, training data are processed
with different weights with respect to different classes, and the



TABLE IV
LOCATION - ACTIVITY LABEL MAPPING

Activity [ Tweet Count | Locations
Enhancement 3848 hospital, library, beauty salon, dentist, doctor, school, spa, university, physiotherapist
Traveling 12371 airport, bus station, train station, transit station, lodging, subway station
Dining 3934 bakery, liquor store, bar, restaurant, meal delivery, cafe
Entertaining 11457 amusement park, aquarium, movie theater, museum, zoo, park, casino, night club, art gallery
Shopping 4045 shopping mall, pharmacy, department\book\clothing\pet\convenience\shoe\electronics store
Sporting 10028 stadium
TABLE V
COMPARISON OF MODEL PERFORMANCE
Content-only J-LSTM H-LSTM
LSTM | BILSTM | CNNLSTM | LSTM+Att | Time | POS | Direct | Hist=5 All Hist=5 | Hist=5+Att
Recall 65.62 66.62 65.62 66.99 66.65 | 66.00 | 66.12 67.30 66.91 65.16 65.56
Precision 65.25 66.02 65.01 66.66 65.76 | 6540 | 65.94 67.03 67.88 66.62 65.53
F1 64.96 65.71 65.06 66.56 6598 | 65.54 | 65.98 67.04 67.19 65.69 65.44
C-LSTM HD-LSTM w/ Hist=5
Time POS Direct Hist=5 All Time POS Direct | Direct+Att
Recall 66.73 66.85 67.01 66.77 66.80 | 67.68 | 67.70 68.70 69.74
Precision | 66.62 66.33 66.53 66.74 67.61 | 68.60 | 67.06 68.13 70.00
F1 66.29 66.30 66.61 66.33 67.06 | 68.03 | 67.22 68.23 69.84

metrics are calculated as the weighted average across classes (one
consequence is that Fl-score may not fall in between precision
and recall values). The training, development, and test sets are
randomly divided with ratios of 0.6, 0.2 and 0.2.

B. Experiment Settings

To show the improvement of using contextual features, we also
experiment with other content-only LSTM based models, i.e.,
BiLSTM [22], CNNLSTM [23], and LSTM with self-attentions
(LSTM+Att). Unlike certain previous tasks [34], [35], using word-
level model results in a better performance than character-level
model in our task. We apply the idea of transfer learning to
initialize tweet content embeddings using GloVe [36] before
training. This creates a more domain-specific word embedding
compared with using fixed pre-trained embeddings, and it also
generates better performance compared with randomly initialized
embeddings. Additionally, POS embeddings are randomly initial-
ized. Post time is represented as day of the week and time of
the day, and we set four time periods for a day. Tweet content
embeddings have 200 dimensions, while POS tags, time, and day
are all mapped to embeddings of 20 dimensions.

Testing with different numbers of historical tweets, we found
that including 5 most recent tweets as the contextual feature yields
the optimal performance for most models. It should be pointed out
that H-LSTM is much more sensitive to the number of historical
tweets compared with other models. POS tags are generated using
a tweet-specific tagger [37], and the models are mainly built using
Keras [38] !. We use 200 nodes for all the LSTM networks in the
experiment with a dropout rate of 0.2, categorical cross-entropy
as the loss function, apply Adam optimization for training, and set
a mini-batch of size 100. Softmax function is used in all output
layers, and all models are tuned with different epochs for optimal
performance.

C. Model Performance

Table V lists the performance of different models. For contex-
tual features, “Direct” refers the use of POS tag sequence and
post time features in addition to target tweet content, while “All”

'Source code is available at https://goo.gl/09dsBh

denotes the use of POS sequence and post time with the content
of both target tweet and 5 most recent historical tweets.

Models that only use the target tweet content results in gen-
erating only limited improvement over the original LSTM. In
contrast, the use of contextual features boosts the performance.
The post time is more useful than the POS tag sequence, and the
benefit of including historical tweets varies with the method of
incorporation.

LSTM uses only the content of tweets and reaches a reasonable
performance for the task given it has 6 labels. Bi-LSTM adds
the ability to understand the content in another order and helps
improve the outcome. Meanwhile, adding the convolutional layer
does not provide much improvement. CNN is used to extract
information similar to an n-gram model, and the informal use
of words in tweets reduces the capability of such information.
As expected, adding attention mechanism considerably helps the
performance.

J-LSTM works better to include historical tweets and C-LSTM
performs better with direct contextual features, while H-LSTM
does not do well to include historical tweets. Since C-LSTM
incorporates the contextual features into every token of the input
sequence, C-LSTM shows to benefit from adding more direct
contextual features. All three contextual models are able to benefit
from including historical tweets. It is surprising that C-LSTM
generates a certain level of improvement with historical tweets. C-
LSTM includes the tokens from historical tweets with the tokens
from the target tweet at each time step, and it is not intuitively
correct that words from different tweets have direct relationships.
We think that some hidden attributes across tweets from the same
author bring the improvement, such as the use of certain words
while the author is engaged in a particular activity.

Combining the power of both J-LSTM and C-LSTM, the hybrid
model outperforms both content-only models and models that
use a fixed method to incorporate contextual features. When
including all features, the large improvement of HD-LSTM over J-
LSTM and C-LSTM shows the effectiveness of the hybrid model.
The reported performance improvements further strengthen the
analysis that was used to build the proposed model: historical
tweets can be better handled by concatenating the complete
information of tweets, and the step-wise concatenation of feature
representations works better to include direct contextual features.
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Fig. 8. Summary of the Activity Distributions for Followers of Certain Accounts

It is also obvious that HD-LSTM benefits from simply including
more contextual features. In contrast, using a single method
to incorporate more contextual features does not consistently
improve the performance. Finally, HD-LSTM also benefits from
adding self-attention mechanism to LSTM layers.

VI. DEMONSTRATING USE OF THE APPROACH: A CASE
STUDY

In this section, we exhibit a real case where the activity
recognition is utilized on a large volume of tweets. The results
validate the effectiveness of the activity recognition model.

We find 7 popular accounts that all have a large number of
followers but are distinct with their fields of focus. For each
account, we collect 10,000 followers randomly, and for each
follower, we collect the most recent 200 tweets. For each tweet,
we apply he hybrid model with POS sequence, post time and
historical tweet features to generate a probability distribution over
activities. Then we generate a distribution of activities for each
follower by combining the distributions of the tweets posted by
that follower. Thus, we are able to accumulate the distribution for
each follower to generate a probability distribution of the activity
labels over the collection of followers for each popular account.
This activity distribution is used to represent the follower activity
profile for this popular account. py; ; is the probability for the
iz, activity label given a single tweet ¢ from follower f, and the
probability P; for the ;5 activity for the collection of followers
for an account would be:

1 1
P = Zo Z 7 pr,t,i

fer 7" teT

Since there are duplications and invalid tweets involved in the
dataset, the number of tweets for each follower used for the
model may not be the same. Therefore, we have a normalization
factor Z;1 to normalize for each follower, and another factor Zj
to normalize for each popular account. In addition, F' is the set
of followers for the account, and 7T is the collection of tweets for
a particular follower.

We train the model using the full dataset from the experi-
ment, and Figure 8 shows the analysis result for these popular
accounts. To make the graph more understandable, we present
the probability for each activity label over popular accounts, so
the probabilities for each activity label do not sum up to 1. The
imbalanced dataset used to train the model creates certain trends
in different activity labels, but the comparison within each activity
label can still be useful to draw some conclusions.

It is straightforward to see that espn has a high probability
for “Sporting” and TravelEditor holds the peak in “Traveling”.
khanacademy and ClevelandClinic represent educational and
medical needs, and it leads to a obvious result of the highest
probabilities in “Enhancement”. It is interesting that Cleveland-
Clinic has the second highest amount of attention of its followers
for travel. The need of expanding medical services from the team
and the need of heading to medical facilities from the patients
could cause such increasing attention in “Traveling”. WholeFoods
and sprinkles, as a food market chain and famous cupcake bakery,
have the highest involvement of both “dining” and “shopping” for
their followers. It shows that the followers of WholeFoods also
care about personal enhancement other than foods. YouTube has
a high involvement of “Entertaining” for its followers, while the
peak of sprinkles indicates that the interest in cupcakes could lead
to the interest in entertainment.

These observations and conclusions are another types of vali-
dation that shows the usefulness and effectiveness of the activity
recognition model.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a methodology for including contextual
features to improve the performance of content-based LSTM
models, with an application of recognizing offline activities of
a user when posting the tweets. Our contributions include a
location-based method to label tweets with offline activities, as
well as an analysis and exploration of the different ways of
including direct and historical contextual features with LSTM
and each technique’s effectiveness. Then we propose a hybrid
LSTM model that combines and takes advantage of the various
methods to include contextual features. Our experiments show
that including contextual information can easily outperform the



content only models, and our hybrid model is able to incorporate
the contextual features more effectively than existing methods.
The amount of improvement shows the importance of choosing
the right method for including certain types of contextual features.
Finally, we validate our activity recognition model by using it to
derive the activity analysis of the followers for several popular
Twitter accounts.

We intend to identify more contextual features and explore their
abilities using additional models. Our current labeling process
highly relies on the reported location of each tweet, thus figuring

out

better ways to improve location accuracy could potentially

increase the usefulness of our work. During our experiments, we
found that some images attached to the tweet may be useful in
identifying activities. While it is currently not common to include
images as contextual features for text data, we believe this could
be a promising direction of research.

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Michelson and S. A. Macskassy, “Discovering users’ topics of
interest on twitter: a first look,” in Proceedings of the fourth workshop
on Analytics for noisy unstructured text data. ACM, 2010, pp. 73-80.
P. Kapanipathi, P. Jain, C. Venkataramani, and A. Sheth, “User inter-
ests identification on twitter using a hierarchical knowledge base,” in
European Semantic Web Conference. Springer, 2014, pp. 99-113.

D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activity
preference by leveraging user spatial temporal characteristics in Ibsns,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,
no. 1, pp. 129-142, 2015.

D. Liao, W. Liu, Y. Zhong, J. Li, and G. Wang, “Predicting activity
and location with multi-task context aware recurrent neural network.” in
1JCAI, 2018, pp. 3435-3441.

D. Lian and X. Xie, “Collaborative activity recognition via check-in
history,” in Proceedings of the 3rd ACM SIGSPATIAL International
Workshop on Location-Based Social Networks. ACM, 2011, pp. 45-48.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

M. Huang, Y. Cao, and C. Dong, “Modeling rich contexts for sentiment
classification with Istm,” arXiv preprint arXiv:1605.01478, 2016.

J. Li, H. Xu, X. He, J. Deng, and X. Sun, “Tweet modeling with
Istm recurrent neural networks for hashtag recommendation,” in Neural
Networks (IJCNN), 2016 International Joint Conference on. IEEE,
2016, pp. 1570-1577.

X. Wang, Y. Liu, S. Chengjie, B. Wang, and X. Wang, “Predicting
polarities of tweets by composing word embeddings with long short-term
memory,” in Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), vol. 1, 2015,
pp. 1343-1353.

D. Rao, D. Yarowsky, A. Shreevats, and M. Gupta, “Classifying latent
user attributes in twitter,” in Proceedings of the 2nd international
workshop on Search and mining user-generated contents. ACM, 2010,
pp. 37-44.

W.-I. Lee, K.-J. Oh, C.-G. Lim, and H.-J. Choi, “User profile extraction
from twitter for personalized news recommendation,” in Advanced Com-
munication Technology (ICACT), 2014 16th International Conference
on. IEEE, 2014, pp. 779-783.

F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing
user behavior in online social networks,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference. ACM,
2009, pp. 49-62.

M. F. Atig, S. Cassel, L. Kaati, and A. Shrestha, “Activity profiles
in online social media,” in Advances in Social Networks Analysis
and Mining (ASONAM), 2014 IEEE/ACM International Conference on.
IEEE, 2014, pp. 850-855.

R. D. Malmgren, J. M. Hofman, L. A. Amaral, and D. J. Watts,
“Characterizing individual communication patterns,” 2009.

A.-Z. Yen, H.-H. Huang, and H.-H. Chen, “Detecting personal life
events from twitter by multi-task Istm,” in Companion of the The Web
Conference 2018 on The Web Conference 2018. International World
Wide Web Conferences Steering Committee, 2018, pp. 21-22.

[16]

(17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

T. Dickinson, M. Fernandez, L. A. Thomas, P. Mulholland, P. Briggs, and
H. Alani, “Identifying important life events from twitter using semantic
and syntactic patterns,” 2016.

J. Ye, Z. Zhu, and H. Cheng, “What’s your next move: User activity
prediction in location-based social networks,” in Proceedings of the 2013
SIAM International Conference on Data Mining. SIAM, 2013, pp. 171—
179.

A. Noulas, S. Scellato, C. Mascolo, and M. Pontil, “An empirical study
of geographic user activity patterns in foursquare.” ICwSM, vol. 11, pp.
70-573, 2011.

W. Weerkamp, M. De Rijke et al., “Activity prediction: A twitter-based
exploration,” in SIGIR Workshop on Time-aware Information Access,
2012.

Y. Song, Z. Lu, C. W.-k. Leung, and Q. Yang, “Collaborative boosting
for activity classification in microblogs,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2013, pp. 482-490.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, 2017.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-Istm neural network for text
classification,” arXiv preprint arXiv:1511.08630, 2015.

Y. Wang, M. Huang, L. Zhao et al., “Attention-based Istm for aspect-
level sentiment classification,” in Proceedings of the 2016 conference on
empirical methods in natural language processing, 2016, pp. 606-615.
Y. Liu, C. Sun, L. Lin, and X. Wang, “Learning natural language
inference using bidirectional Istm model and inner-attention,” arXiv
preprint arXiv:1605.09090, 2016.

S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean, and L. Heck,
“Contextual Istm (clstm) models for large scale nlp tasks,” arXiv preprint
arXiv:1602.06291, 2016.

Q. Zhou, L. Wen, X. Wang, L. Ma, and Y. Wang, “A hierarchical
Istm model for joint tasks,” in China National Conference on Chinese
Computational Linguistics. Springer, 2016, pp. 324-335.

S. Yang, A. Kolcz, A. Schlaikjer, and P. Gupta, “Large-scale high-
precision topic modeling on twitter,” 2014.

R. Mehrotra, S. Sanner, W. Buntine, and L. Xie, “Improving lda
topic models for microblogs via tweet pooling and automatic labeling,”
in Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. = ACM, 2013, pp.
889-892.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998-6008.

E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011, pp. 65-74.

M. Cha, H. Haddadi, F. Benevenuto, P. K. Gummadi et al., “Measuring
user influence in twitter: The million follower fallacy.” Icwsm, vol. 10,
no. 10-17, p. 30, 2010.

S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2vec: Learning tweet
embeddings using character-level cnn-lstm encoder-decoder.”

B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen,
“Tweet2vec: Character-based distributed representations for social me-
dia”

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

0. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A.
Smith, “Improved part-of-speech tagging for online conversational text
with word clusters.” Association for Computational Linguistics, 2013.
P. Charles, “Project title,” https://github.com/charlespwd/project-title,
2013.



