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Abstract—Mobile apps often use analytics infrastructures pro-
vided by companies such as Google and Facebook to gather data
about app performance and user behaviors. However, there are
significant privacy concerns about the collection and use of such
data. In a world with increasing privacy threats and demands, it
is important to develop better definitions and enforcement of the
trade-offs between data analytics benefits and the loss of privacy.

We propose PRIVAID, a conceptual approach and related
software components for achieving such trade-offs in app analyt-
ics for Android apps. Our proposal employs differential privacy
(DP), a powerful and rigorous privacy definition and algorithmic
framework. In essence, a DP solution perturbs the results of
a data analysis in order to achieve a quantifiable notion of
privacy. We highlight the challenges of applying DP techniques to
existing analytics frameworks for Android apps. We then describe
how these challenges are addressed by the design of PRIVAID
and its components for app analysis, rewriting, and profiling.
Next, we develop an instance of PRIVAID for DP collection of
event frequency information in apps that use the popular Google
Analytics framework. Our experimental evaluation demonstrates
that practical trade-offs between privacy, accuracy, and cost can
be achieved for real-world Android apps.

I. INTRODUCTION

Mobile apps often use analytics infrastructures provided
by companies such as Google and Facebook [1]. The data
gathered from such analytics can be used for offline anal-
ysis of app performance and user behaviors such as clicks,
screen transitions, purchase history, and location data. The
libraries implementing the analytics infrastructure are inde-
pendent modules of apps installed on users’ devices. They
silently collect information in the background, usually without
users’ knowledge. The use of such tracking is widespread, as
indicated by recent studies [2].

For an app developer, the benefits of such analytics could
be substantial. Information obtained from the detailed stream
of app-generated events could be used for targeted advertis-
ing, behavioral analytics, location tracking, and app improve-
ments [1]. However, there are significant privacy concerns
about the collection and use of such data. Over the last few
years, there has been increasing awareness and scrutiny of
data gathering performed by various companies. There are
legislative efforts and societal demands for increased trans-
parency and for well-defined trade-offs between the utility of
data gathering and the corresponding loss of privacy.

One promising technique for achieving such trade-offs is
privacy-preserving data analysis. Such analysis is designed
with guarantees about the loss of privacy and the accuracy

of analysis based on the collected data. The last decade has
witnessed the rise of a rigorous theory to deal with this
challenge. This theory is centered around a meaningful and
robust mathematical definition for privacy, known as differen-
tial privacy (DP) [3]. A powerful algorithmic framework for
differential privacy has been developed over the years, and led
to numerous practical and efficient algorithms with strong and
provable privacy guarantees for various problems. Differential
privacy has recently been adopted by industry—for example,
in the Chrome browser [4] and in iOS-10 [5], [6].

While there is a large body of work on differential privacy,
the practical applications of these techniques in the context of
the widely-used analytics frameworks for mobile apps have
not been studied. Introducing DP mechanisms in apps that
collect such analytics data has clear benefits to users. The app
developer also benefits from such mechanisms: the information
they gather provides analytics value while at the same time the
app creator can claim, with confidence, that users are provably
protected against leaks of their sensitive data due to rogue
employees, legal proceedings, unethical business practices,
or security breaches. Such claims by developers make their
product more attractive to users. In addition, they may be able
to provide legal protection for the business, which may be
valuable due to the increasing interest taken by legislatures
around the world in protecting the privacy of their citizens.

Challenges. Despite significant advances in DP theory,
applying DP solutions to analytics frameworks for mobile
apps faces several major obstacles. First, the providers of
analytics frameworks—companies such as Google, Facebook,
and Yahoo—do not supply DP capabilities and are unlikely
to provide them in the near future. Any DP solution deployed
by an app developer today—e.g., a developer who is using
the Google Analytics framework—should work without any
changes to the framework implementation and APIs, both
locally on the user’s device and remotely at Google’s servers.
This “black box” view is a significant departure from the
standard assumption in DP research, where the researchers
have complete control over the entire analytics infrastructure
and can deploy various sophisticated DP protocols.

The second challenge is to introduce DP capabilities in
a given app with little or no effort from the app developer.
Ideally, the developer would write their app without any DP
considerations, and a subsequent automated code rewriting
step would introduce DP-enforcing code. Such separation of
concerns is highly valuable for software development, testing,



debugging, and evolution.

The third challenge is to allow a developer to understand
and fine-tune their data collection. The performance of DP
analyses depends on various parameters and it is difficult to
understand how these parameters affect the trade-offs among
privacy, analytics accuracy, and time/memory/communication
costs. Developing trade-offs for these factors under realistic
usage scenarios is a major challenge for an app developer
who has decided to deploy a DP-based analytics solution.

Our proposal. To address these challenges, we propose the
PRIVAID approach for differentially-private analytics for An-
droid apps. The approach consists of a conceptual design for
DP-based mobile app analytics together with several software
components that instantiate the approach and can be used by
app developers. To the best of our knowledge, this is the first
work that attempts to introduce DP in the behavioral analysis
of Android apps.

PRIVAID is specifically designed to address the three chal-
lenges outlined above. First, the approach does not expect any
changes to the infrastructure provided by Google, Facebook,
etc. Rather, by using its own data pre/post processing, it
“fools” the DP-unaware analytics infrastructure to behave in
DP manner. The data processing, which requires both static
code rewriting and run-time data manipulation, is achieved
transparently with the help of a code rewriting tool and a
run-time support layer. This addresses the second challenge
described earlier, by allowing a developer to focus on the busi-
ness logic of the app without directly creating or manipulating
DP-related code. Finally, PRIVAID provides infrastructure for
testing and profiling the resulting DP app, to help understand
the interplay between analysis parameters and to enable the
developer to make informed deployment decisions.

Contributions. The work makes the following contributions:

• We propose a design for PRIVAID and describe the
significance of its individual components

• We define an instance of PRIVAID for collecting event
frequency information for apps that use the popular
Google Analytics infrastructure

• We develop static code rewriting and run-time support
needed to implement this instance of PRIVAID

• We describe an experimental evaluation that demonstrates
PRIVAID’s feasibility and performance

This work is a first step in defining a research agenda for
DP analytics for mobile apps. Such apps are deployed on
billions of devices. There is fundamental tension between the
privacy of device users and the business needs of app devel-
opers. In this context, PRIVAID is the first effort to employ
differential privacy to establish a well-defined space of trade-
offs between privacy and analytics accuracy, together with a
practical demonstration for real apps using Google Analytics.
This work also enables future research on the increasingly-
important subject of user privacy, in an environment where
widespread use of data analytics is rapidly becoming the norm.

II. BACKGROUND: GOOGLE ANALYTICS FOR ANDROID

There are several analytics infrastructures that offer full-
stack solutions to an app developer. Google Analytics (GA) [7]
and its successor Firebase [8] are among the most popular
ones. They allow a developer to collect and conduct various
analyses against users’ data. Facebook [9], Yahoo [10], and
several others also provide similar services. Even though their
policies [11]–[14] require developers to avoid recording (or at
least to anonymize) user-identifiable information, users may
still be left vulnerable to data breaches and surveillance by
infrastructure providers and app developers [15], [16].

A recent study of thousands of Android apps [2] has
identified that Google Analytics was used by 38% of the
analyzed apps. This popularity motivates our focus on privacy-
preserving analysis for GA; however, the underlying theoret-
ical machinery and program analyses are general and should
be applicable to other analytics libraries as well. One of the
key features of GA is to provide the frequency of events.
Such frequency information helps a developer understand how
users interact with her app, by quantifying user engagement
and behaviors. An event is defined by the developer to track
specific actions that users take within an app. GA, as well as
other similar analytics libraries, allows a developer to insert
API calls to track such events and to send information about
them to backend servers (which themselves are maintained by
Google, Facebook, etc.) for further analysis.

A. Running Example

GA is offered by Google to app developers to collect de-
tailed statistics about user information and behaviors including
session duration, user-triggered events, etc. For example, GA
can track when the user has navigated to a particular screen
in the app, or has performed an action such as sharing content
with someone from her contact list. As another example, e-
commerce data could be gathered, including product clicks,
viewing product details, adding a product to a shopping cart,
transactions, and refunds. The GA framework is general and
the type of data being collected is up to the app developer.

To illustrate some basic GA capabilities, we use the example
in Figure 1. The ParKing app navigates users to parking
places, records history of parking locations, and reminds users
about parking time. It has over 100K installs via Google
Play. Figure 1a shows a snippet of decompiled code from the
app. Class ParKingApplication maintains a global context
and its instance is retrieved via getApplication (line 13).
Classes GoogleAnalytics and Tracker are helper classes
to create and send data to Google’s remote server. Method
ParKingApplication.a creates a Tracker singleton at
line 7 by calling GoogleAnalytics.newTracker with the
resource ID of an XML file containing a Google-provided
tracking ID, which is shown in Figure 1b. All data recorded
for this ID can be accessed by the developer of ParKing. We
utilize this API in experiments to redirect all tracking data in
closed-source apps to our own GA account.

Activities are the core components in Android apps. An
activity displays a window containing GUI widgets. Class



1 class ParKingApplication extends Application {
2 Tracker t;
3 Tracker a() {
4 if (t == null) {
5 GoogleAnalytics i =
6 GoogleAnalytics.getInstance(this);
7 t = i.newTracker(R.xml.global_tracker); }
8 return t; } }

9 class AutoParkActivity extends Activity {
10 Switch s;
11 Tracker t;
12 void onCreate(...) {
13 t = ((ParKingApplication)getApplication()).a();
14 s = (Switch)findViewById(...);
15 s.setOnCheckedChangeListener(
16 new OnCheckedChangeListener() {
17 void onCheckedChanged(boolean isChecked) {
18 MyUtils.a(isChecked, t); ... } }); ... }
19 void onResume() {
20 t.setScreenName("AutoParkActivity");
21 ScreenViewBuilder b = new ScreenViewBuilder();
22 t.send(b.build()); } }

23 class MyUtils {
24 static void a(boolean z, Tracker t) {
25 EventBuilder b = new EventBuilder();
26 if (z) { b.setAction("Activated"); ...; }
27 else { b.setAction("Deactivated"); ...; }
28 Map<String,String> m = b.build();
29 t.send(m); } }

(a) Decompiled code
1 <resources>
2 <string name="ga_trackingId">UA-65112504-3</string>
3 </resources>

(b) global_tracker.xml
il.talent.parking
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Fig. 1: Example derived from ParKing.

AutoParkActivity shows a screen with settings for auto-
matic parking detection. It contains a switch widget s (line 10)
to turn this function on/off. The onCreate callback is called
when an activity is created. It retrieves and stores the Tracker
to field t at line 13. An OnCheckedChangeListener is
associated with widget s at line 15–16. Whenever the switch
is pressed, method onCheckedChanged at line 17 will be
invoked and MyUtils.a will be called at line 18. GA
uses the builder pattern for creation of events. At line 25,
an EventBuilder is created. Lines 26–27 set the action
for the event to “Activated” or “Deactivated” according to
the boolean parameter z indicating whether auto-parking
function is on/off. EventBuilder.build at line 28 returns

a helper map m containing the event action together with
other GA-internal data. This map is used as a parameter
of Tracker.send at line 29, which uploads the event to
Google’s backend servers.

When an activity comes to the foreground, its onResume

callback is invoked. Lines 20–22 create a screen view event
and send it to the GA servers. Screen views track the views of
a particular screen in the app. Conceptually, they are identical
to pageviews for web analytics. A screen represents some
displayed content. Each screen has a unique string name that is
used as an identifier. A call to Tracker.setScreenName at
line 20 records a name for the current screen as “AutoParkAc-
tivity”. ScreenViewBuilder at line 21 is the helper class to
build the event. ScreenViewBuilder.build functions sim-
ilarly to EventBuilder.build, returning a map for upload
with action type “screenview”. The call to Tracker.send at
line 22 sends the screen view to the remote servers.

Besides activities, developers can specify other GUI com-
ponents as screens, e.g., fragments. We inspected the app
code and determined that there are 11 screens in the app
code: “AboutActivity”, “AutoParkActivity”, “CompassActiv-
ity”, “HelpActivity”, “HistoryFragment”, “LastParkingFrag-
ment”, “ParkActivity”, “SettingsActivity”, “Splash”, “Trans-
parentActivity”, and “ZoneEditorActivity”. One of the chal-
lenges for PRIVAID is to identify all possible screen names
automatically. Technical details about our solution will be
provided in later sections.

Google aggregates data from many app users and provides
the result to the app developer. Figure 1c is a sample report
of screen view events in ParKing from GA’s website. We
have replaced the app’s tracking ID with ours so that all
data from our app runs is sent to our account. GA supports
generation of reports for specific types of users (the orange
box) within a certain time period (the blue box). The report
contains a histogram of all screens, including their names and
frequencies, as shown in the red and purple dotted boxes.

B. User Privacy

GA and similar analytics frameworks provide some rudi-
mentary privacy protection. For example, an app developer
can instruct GA to remove the last octet of the IP address
being recorded. As another example, Google’s guidelines for
app developers are to avoid collecting personally-identifiable
information such as names, etc. However, to the best of
our knowledge, there is no systematic enforcement of such
protection mechanisms. Furthermore, as discussed in the next
section, even seemingly-innocent information that has been
anonymized can lead to real privacy leaks when combined
with additional information from other sources. In a societal/
legal environment where privacy is increasingly valued and
enforced, this state of affairs is unacceptable.

III. BACKGROUND: DIFFERENTIAL PRIVACY

Differential privacy is a general approach for protection
against a wide range of privacy attacks. In such scenarios,
there is release of some data and an adversary attempts to



learn private individual information from the data. Examples
of such attempts are re-identification of persons, linking of
records from different sources, and differencing attacks (e.g.,
comparing statistics before and after an event of interest).
These attacks are different from security attacks, in which
unauthorized access is gained to sensitive data. In security, data
access by an adversary should be denied. In privacy, certain
data is intended to be released (to government, researchers,
or businesses) but it is assumed that an adversary will also
gain access to this data. Here “adversary” is used broadly: for
example, data released by the user to some company under
certain terms may later be obtained by another company (e.g.,
as part of a corporate takeover) and used in a manner that was
not anticipated by the user. As another example, user data
shared with some organization could be subpoenaed in legal
proceedings despite the user’s expectations.

Anonymizing or removing personally-identifiable informa-
tion cannot guarantee user privacy while keeping the useful-
ness of collected data. Researchers have demonstrated various
attacks in this setting [15]–[18]. A prominent example is
work [15] that identified individual records from Netflix’s
collection of anonymized viewing histories by linking with
another movie database.

Differential privacy (DP) [19] has emerged as a prominent
approach for protection against privacy attacks. With DP anal-
ysis, anyone seeing the analysis results will essentially make
the same inference about any individual’s private information,
whether or not that individual’s private information is included
in the input to the analysis [3], [20]. There are many techniques
for achieving DP. As one simple example, the output of a
non-DP analysis could be perturbed using random noise with
Laplacian distribution to achieve provable DP guarantees.

We will not attempt a detailed description of this rich field
of research; extensive overviews are available elsewhere [19],
[20]. DP solutions have been deployed by several companies
(e.g., Google [4], [21], Apple [5], [6], and Uber [22]). The
U.S. Census Bureau will use differential privacy to protect the
results from the 2020 census [23]. Given the rapid emergence
of large-scale data analytics and machine learning, and their
detrimental effects on privacy, the importance and urgency of
privacy solutions (including differential privacy) will continue
to increase in the foreseeable future.

There are two major models for defining DP problems. In
the centralized model, individuals’ data is provided to a trusted
curator, where DP analysis is performed and its results are
released to (untrusted) analysis clients. In the local model, the
curator is not trusted: raw data that reaches the curator can
be observed by an adversary (e.g., the curator itself could be
an adversary). For such locally differentially private (LDP)
problems, each user performs local data perturbation before
releasing any information to the curator. The LDP model is
particularly well suited for app analytics for mobile devices.
The app user releases data to the curator (e.g., Google, if the
app uses GA). The curator analyzes the data and provides
the results to the client—that is, to the app developer. This
model provides privacy guarantees to the app user regardless

of the (unpredictable) actions of an analytics company such
as Google or of the app development company.

A. Exemplar LDP Analysis: Frequency Estimates

To make our discussion more concrete, we will employ a
fundamental problem in data analytics: constructing (estimates
of) event frequencies. This exemplar problem is closely related
to many analytics problems, including counting (e.g., number
of individuals whose data satisfies some predicate), histograms
(e.g., counts of data in disjoint categories), heavy hitters
(e.g., most frequently occurring items) [24], [25], distribution
estimation [26], regression, clustering [27], and classification.

Consider a community of n app users and assume that each
user is identified by an integer id i ∈ {1, . . . , n}. Each user
has a single data item vi. For now, assume that all data items
belong to some data dictionary D that is pre-defined by the app
developer based on her analytics needs. For any value v ∈ D,
its frequency is f(v) = |{i ∈ {1, . . . , n} : vi = v}|. The app
developer’s goal is to obtain the histogram defined by f(v)
for all v ∈ D. This problem definition is an abstraction of
a typical analytics task. All analytics frameworks for mobile
apps support such tasks. For example, frequency histograms
are one of the major outputs provided by GA to the app
developer, as illustrated in Figure 1c.

An LDP solution to this problem will apply a local ran-
domizer to each user’s data item. More precisely, an ε-LDP
protocol applies an ε-local randomizer R : D → Z to each
user’s item vi. The resulting zi = R(vi) is sent to the server.
The server collects all zi and uses them to compute a frequency
estimate f̂(v) for the real frequency f(v) of each v ∈ D.

Two important properties of an ε-LDP protocol are:
• Privacy: The privacy is due to the ε-local randomizer:
∀v, v′ ∈ D, z ∈ Z : Pr [R(v) = z] ≤ eεPr [R(v′) = z].
Here Pr [a] denotes the probability of a.

• Accuracy: Measured based on the difference between the
vector of actual frequencies and the vector of estimates—
specifically, the largest value of |f̂(v)− f(v)| over all v.

The randomization achieves privacy by allowing plausible
deniability: if a user has item v and as a result z = R(v) is
reported to the server, the observation of that z (by the server
or by a third party) does not reveal “too much” information
about which item was actually held by the user. This is because
the probability Pr [R(v′) = z] that the item was some other
v′ is close (by a factor of eε) to the probability Pr [R(v) = z]
that the item was the actual v. The privacy loss parameter ε is
used to limit and quantify what can be learned about a user as
a result of her data item being included in the analysis. Larger
values of ε result in less privacy but higher accuracy.

There are various ways to design the local randomizer
R. For example, the popular RAPPOR approach [4] used
in Google Chrome represents the data of user i as a bit
vector of length |D|, where only bit vi is set to 1. In the
simplest version of RAPPOR (“basic one-time” [4]), each bit
is randomly inverted using a biased coin. The server processes
the resulting bit vectors and accounts for the randomization
when computing the frequency estimates f̂(v) for all v ∈ D.
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Fig. 2: PRIVAID on app user’s device.

There is a large body of work on this problem. As a
baseline, we describe a very simple standard solution. Our
explanation is a re-formulated version of the basic one-time
RAPPOR descriptions available elsewhere [4], [28]. There are
more advanced solutions with better theoretical accuracy and
cost (e.g., [24], [29]), but they require significant “white box”
re-design of the analytics infrastructure and cannot be easily
deployed in the near future. Instead, we consider an approach
that keeps the current analytics infrastructure intact.

The solution is based on a local randomizer R : D → P(D)
where P(. . .) denotes a powerset. Given an item vi held by
an user, the user’s data “I have vi” is randomized to “I have
the set of items R(vi)”. This is an instance of the classic
randomized response technique that has been used in social
sciences to gather sensitive data (e.g., about illegal behaviors).
The randomizer is defined as follows:
• v is included in R(v) with probability e

ε
2

1+e
ε
2

• v′ is included in R(v) with probability 1

1+e
ε
2

for any
v′ 6= v

It is easy to show that this is an ε-local randomizer.
Given sets R(vi) reported by all users, the server computes

standard frequency counts to obtain a histogram value h(v)
for each v. Here h(v) is the number of occurrences of v in
all R(vi). These values have to be adjusted to account for the
effects of randomization. The resulting frequency estimates are

f̂(v) =
(1 + e

ε
2 )h(v)− n
e

ε
2 − 1

(1)

where n is the number of users. It is easy to see that the
expected value of the estimate f̂(v) is equal to the real
frequency f(v). Thus, f̂(v) is an unbiased estimator of f(v).

IV. DESIGN OF PRIVAID

Current analytics frameworks for mobile apps—e.g., Google
Analytics, Facebook Analytics, and Yahoo Flurry—do not
provide LDP features and there is no prior work on performing
LDP analytics in them. Introducing LDP mechanisms in these
frameworks would provide rigorous and quantifiable trade-offs
between data gathering utility and loss of privacy. However,
doing this without any changes to the underlying analytics
infrastructure is a challenge. Figure 2 presents the design of
PRIVAID that addresses this challenge.

On top of the standard analytics libraries running on the
user’s device, PRIVAID introduces a layer that implements
local randomization. To make the discussion more concrete,
we describe the components of this layer for an instance of the

approach specific to Google Analytics. Similar structure and
behavior would be applicable to other analytics frameworks.

Relevant GA API calls (e.g., the calls to Tracker.send

in Figure 1) can be automatically redirected to corresponding
proxy APIs (e.g., Proxy.send). This redirection can be
achieved with an automated code rewriting tool. Our con-
crete implementation uses the Soot code analysis/rewriting
framework [30], but many other choices are also available.
The proxy API methods coordinate the remaining PRIVAID
components. The randomizer component applies the local
randomization and sends the relevant events to the dispatcher
component. The dispatcher maintains a queue of pending
events and periodically makes GA API calls to deliver them
to the GA layer. The dispatcher also makes unsent events
persistent when the app is closed. Our implementation utilizes
JobService in Android for scheduling and SQLite for storing
events. One GA-specific implementation detail is that the
GA layer drops events if they arrive too frequently. The
dispatcher ensures that events are forwarded to the GA layer
with sufficient delays between them.

The implementation layer can be built at the time the app is
created, and distributed as part of the app code when the app
is published in an app market. Most of the code in this layer
would be open-source and created by a trusted party (e.g.,
privacy researchers), while app-specific functionality would
be added by the app developer. On the user’s device, there
are no changes to the standard analytics API implementations
that process events and send them to the server. The analytics
server is completely unaware of the fact that there is any DP
aspect to the data collection and analysis. After the server
reports its results, they are post-processed by the app developer
to obtain the actual estimates of the desired analytics data.
Such a “black box” solution is easy to deploy today.

V. EVENT FREQUENCIES FOR GOOGLE ANALYTICS

As a proof of concept, we have defined an instance of PRI-
VAID that collects event frequency information for apps that
use Google Analytics. Our current implementation focuses on
screen view events, but the underlying theoretical machinery
and implementation infrastructure are general and could be
used for other categories of events. Recall from Section II-A
that each screen in the app has a string identifier and the
app uses GA API calls to send such events to the server
(lines 20–22 in Figure 1a). The GA event frequency reports,
similar to the one shown in Figure 1c, can be created using
local randomization and then post-processed to account for its
effects. Next, we describe the building blocks of this solution.

A. LDP Event Frequency Estimates

The problem we define is a generalization of the exemplar
problem from Section III-A. While in that problem each user
reports a single data item, now each user reports a sequence
of items. Each app user has an integer id i ∈ {1, . . . , n}. Such
ids are used for the conceptual definition and are not needed
in a practical implementation. The set of string identifiers for
screens defines a data dictionary D. For example, as described
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in Section II-A, ParKing has 11 strings in its dictionary. For
ease of notation, assume that D = {1, . . . , d}. As with user
ids, these event ids are used only for explanation purposes.

Data collection is performed for all n users over some period
of time. During this period, user i generates a sequence of
screen view events v1i , v

2
i , . . . , v

k
i where vji ∈ {1, . . . , d}. To

simplify the discussion, assume that each user generates the
same number of events k. If this is not the case, conceptual
“padding” events with no effect can be introduced. The event
sequence v1i , v

2
i , . . . , v

k
i can be thought of as a histogram

xi ∈ Nd—that is, a d-dimensional vector of frequencies, where
xi[v] ∈ N is the number of occurrences of v in the sequence.

In a non-LDP setting, all events vji for all users i are sent to
the GA server, which aggregates their counts and produces a
histogram H =

∑
i xi, where the summation is element-wise

for vectors xi. For any v ∈ D, its frequency is H(v). The
resulting histogram is similar to the one shown in Figure 1c.

Example. Figure 3a illustrates this scenario with two app
users. The data was obtained by running the popular Monkey
GUI testing tool [31] on the ParKing app. Monkey randomly
triggers GUI events that result in GA API calls inside the
app code. Two different Monkey runs were used to obtain the
data representing the two app users. Each user produces 100
events. In the figure, the corresponding histograms are denoted
by x1 and x2. Note that GA does not send the histograms to
the server, but rather the individual events that were observed.
The server adds up the event counts from the two users and
reports the resulting histogram H to the app developer. �

An ε-LDP solution applies an ε-local randomizer R : Nd →
Nd. The resulting zi = R(xi) is sent to the server. The server,
which is LDP-unaware, computes a histogram Ĥ =

∑
i zi and

reports it to the app developer. The app developer performs

post-processing of Ĥ to compute, for each v, an estimate f̂(v)
for the actual frequency f(v) = H(v) that would have been
observed without differential privacy.

Example. Figure 3b illustrates the steps of the LDP solution.
Each user i, independently of any other users or the server,
applies the local randomizer R to her real event sequence to
generate a randomized event sequence. (The definition of R
will be presented shortly.) All resulting events are sent to the
GA server. In the figure, zi denotes the histogram for this new
sequence. The data was obtained by applying PRIVAID to the
real GA events in ParKing that were used for xi in Figure 3a.
Value ε = ln(9) is used in prior work [4] and reused here.

Comparing xi with zi, it is clear that significant noise
was added by R to each user’s data. The server adds up the
counts of reported events and provides the resulting histogram
Ĥ = z1 + z2 to the app developer. The developer performs
post-processing of Ĥ (described later) to obtain the f̂(·)
frequency estimates. The accuracy of these estimates—that is,
their differences from the real histogram H in Figure 3a—
depends on the number n of app users and on the value of ε.
In this particular example, the number of users is very small
(n = 2) and the estimates are rather inaccurate. Section VII
presents an extensive experimental evaluation of the accuracy
that can be achieved in realistic scenarios. �

As standard with DP analyses, including the exemplar
problem from Section III-A, privacy is achieved by ensuring
that for any output of the randomizer R, many inputs are
possible with high probability. One standard choice for the
desired properties of R is based on the notion of user-level
privacy [19]. In our context, the definition is as follows.
Consider two event sequences v1, v2, . . . , vk and v′1, v

′
2, . . . , v

′
k

and their corresponding histograms x ∈ Nd and x′ ∈ Nd. An
ε-local randomizer is defined as follows: for all z ∈ Nd and
all pairs x, x′ ∈ Nd, Pr [R(x) = z] ≤ eεPr [R(x′) = z]. In
essence, the observation of z by an adversary provides very
little information about the user’s real event sequence, as (with
high probability) any other event sequence could have been the
user’s raw data before randomization. The exemplar problem
discussed earlier is an instance of this definition for k = 1.

B. Baseline Local Randomizer

We first define a baseline randomizer R for use in PRIVAID,
similar to the single-event randomization from Section III-A.
Refinements of this baseline solution are described later.

For any v ∈ D, let r(v) be a subset of D defined as follows:
(i) v is included in r(v) with probability (e

ε
2 )/(1+e

ε
2 ), and (ii)

v′ is included in r(v) with probability 1/(1+e
ε
2 ) for any v′ 6=

v. This element-level randomizer is the same as the one defined
in Section III-A. Given a sequence of events v1i , v

2
i , . . . , v

k
i

which corresponds to a histogram xi ∈ Nd, consider the multi-
set that is the union of all r(vji ). The histogram zi ∈ Nd for
this multi-set is R(xi). Figure 3 shows examples of xi and zi.

This approach can be implemented on demand: every time
we observe an event vji at run time, r(vji ) is computed and the
resulting events are sent to the GA server. The pseudo-code for
this processing inside PRIVAID is shown in Figure 4. The call



for (String name : D) {
if (name.equals(observed)) {

if (rand() <= THIS_PROBABILITY) {
// probability: exp(epsilon/2)/(1+exp(epsilon/2))
send(name); }

} else if (rand() <= OTHER_PROBABILITY) {
// probability: 1/(1+exp(epsilon/2))
send(name); } }

Fig. 4: Pseudo-code for event randomization.

to rand returns a new pseudo-random number ∈ [0, 1). This
processing is executed each time an event is observed. The
cumulative effect over the entire event sequence is equivalent
to applying a histogram randomizer R : Nd → Nd. However,
instead of computing histogram xi first and then applying R,
we randomize each event as soon as we see it, which achieves
the same effect as directly computing zi = R(xi).

To obtain the frequency estimate f̂(v) for each event v, the
app developer adjusts the server-reported count Ĥ(v). This is
done similarly to the single-event case described in Section III,
Equation 1: the value of (1 + e

ε
2 )Ĥ(v) − nk is divided by

(e
ε
2 − 1). Here n is the number of users and k is the number

of real events for each user. The expected value of an estimate
f̂(v) is the real frequency f(v).

Example. Consider the v for which Ĥ(v) = 71 in Figure 3b.
We have ε = ln(9) and e

ε
2 = 3. After post-processing, f̂(v)

becomes (4 × 71 − 2 × 100)/(3 − 1) = 42, which matches
the f̂(·) value shown in Figure 3b. If the estimate becomes
negative, the reported frequency is 0. For example, the first bar
for Ĥ in Figure 3b has the value of 42. Since (4×42−2×100)
is negative, the first bar for f̂(·) has zero height. �

One technical detail is that this post-processing depends on
the number nk of real events across all users. If some users
have fewer than k events, the actual number of events should
be used in the f̂(v) computation. Each user can send to the
server his number of real events. Alternatively, the number of
real events across all users can be easily estimated from the
number of events observed at the server (i.e., by the total size
of Ĥ) by considering the probabilities in the definition of R.
In our experience, these estimates are very accurate.

C. Achieving Trade-Offs via Sampling

For user-level privacy, the randomizer R defined above is a
kε-local randomizer: the level of privacy protection is wors-
ened by a factor of k, where k is the length of the user’s event
sequence. Intuitively, instead of “hiding” a single event, the
randomization now has to hide k events. Given the practical
consideration that k would often be large (e.g., hundreds of
events per user), achieving useful user-level privacy presents
a significant challenge.

Another challenge is the potential overhead of this approach.
For each event vji observed at run time, all events in r(vji )
are sent to the analytics server. The expected size of r(vji ) is
(d − 1 + e

ε
2 )/(1 + e

ε
2 ). Thus, the overhead depends on the

size of D. For illustration, consider d = 11 as in the running
example, and e

ε
2 = 3. In this case, for each real event there

will be 3.25 events on average reported to the server.

To address these challenges, we employ sampling [24], [25].
Each user assigns herself independently and randomly to one
of several subsets of {1, . . . , k}. Each such subset is of size
t, where t is a small constant independent of the number of
users n and the event sequence length k. Instead of considering
all of its k real events, the user only considers the t real
events whose indices are in the user’s subset. These t events
are randomized and the results are reported to the server.
PRIVAID uses a simple implementation of this approach which
does not require any synchronization with the server or other
users. For any user i, when the analytics infrastructure is
initialized, t independent random values from {1, . . . , k} are
drawn (without repetition) and recorded. For any observed
event vji , index j is checked against this set of t values. The
event is ignored if the index is not in this set.

Using this sampling achieves two important goals. First,
the privacy guarantees for user-level privacy are significantly
improved: instead of having a kε-local randomizer, we now
have a tε-local randomizer where t is a small constant. Further,
the overhead of extra events is reduced: instead of incurring
this overhead k times, we incur it t times. These benefits come
at the expense of decreased accuracy. The worst-case accuracy
is reduced by a factor of

√
k/t [24], [25]. Despite this worst-

case behavior, our experiments indicate that for real Android
apps it is possible to achieve practical accuracy when there is
a sufficiently large number of app users.

VI. PRIVAID FOR GA EVENT FREQUENCIES

The conceptual approach from the previous section was
implemented with the help of several components, following
the design from Figure 2. First, we built a proxy for GA APIs,
as well as a code rewriting tool takes as input an app’s APK
and automatically replaces GA API calls with calls to the
corresponding proxy APIs. This rewritten code, together with
the code in our implementation layer, is then packed back into
a new APK which can later be installed on a user’s device.

The randomizer is parameterized by ε, t, and k. Only the
first k events from a user are considered; this increases privacy
by limiting the amount of information released to the server.
Randomization also depends on the dictionary D. While this
dictionary could be provided by an app developer who utilizes
PRIVAID, it is also possible to construct it automatically. We
built a static analysis that considers relevant API calls (e.g.,
setScreenName at line 20 in Figure 1) to determine the
screen names that flow into calls to send (e.g., at line 22).
For the running example, this analysis identifies the 11 screen
names described in Section II-A.

For each GoogleAnalytics.newTracker call site, the
static analysis creates an artificial object representing the
corresponding Tracker instance. The analysis then propa-
gates references to these objects, as well as references to
string constants, to setScreenName calls. This information
is used to determine the possible screen names associated
with each Tracker. There are two types of strings that are
considered: string constants in the code and strings defined
in XML resources. The propagation is done via a value-flow



analysis similar to flow-insensitive, context-insensitive, field-
based points-to analysis [32].

The static analysis also creates an object for each new

ScreenViewBulder site. These objects are propagated to
build calls (e.g., line 22 in Figure 1). The resulting objects,
which are maps storing information about the GA event to be
sent, are then propagated to send calls. The Tracker objects
are also propagated to the send calls. Note that the example
in Figure 1 shows straightforward propagation of such object
references, but the analysis can handle the general case where
the propagation is done through a sequence of assignments,
parameter passing, and method returns. The resulting analysis
solution determines which tracker is responsible for sending
which screen view event, as well as what screen names are
attached to each event. We record these associations in maps
during the propagation. This information is then packed in the
app’s APK as part of the PRIVAID implementation layer.

It is possible that the randomizer does not have the complete
definition of D ahead of time, and occasionally observes run-
time events that are not in D. This could happen, for example,
if the app developer’s dictionary definition is incomplete, or
the static analysis is not sound. It is possible to recover on-the-
fly when an unknown event v is observed on a user’s device.
First, this event is added to set D locally. Next, all real events
for this user that were already processed and randomized
are revisited. For each such past event, v is reported with
probability 1/(1 + e

ε
2 ). In effect, this is equivalent to the

processing that would have been performed in the past had
the dictionary been D ∪ {v} at that time.

VII. EXPERIMENTAL EVALUATION

Our PRIVAID instance for GA screen view events was
implemented via app analysis and rewriting with Soot [30]. In
the near future, we plan to release this implementation together
with the subject apps and the testing/profiling infrastructure
used in its evaluation. The experiments were performed on two
machines with Xeon E5 2.2GHz and 64GB RAM. To generate
GUI events that simulate user actions (and internally trigger
GA events) we utilized the Monkey tool for GUI testing [31].

A. Study Subjects

We analyzed a corpus of the most popular apps in each
category in the Google Play store, and identified apps that
include GA API calls. The static analysis was used to construct
the dictionary D of string identifiers for screens. Apps with
small dictionaries (less than 10 elements) were excluded
because we wanted to study the overhead of the approach;
recall that this overhead depends on dictionary size.

The code rewriting tool then took as input the original APK
of each app to generate a repacked APK with our implemen-
tation layer bundled with the app. We installed each APK and
ran Monkey for 5 minutes on 10 emulators. Each of the 10 runs
used a different seed for Monkey’s random generation of GUI
events, and thus triggered a different GUI behavior (and, as a
result, a different sequence of GA API calls). Apps for which
the entire dictionary could not be determined statically were

TABLE I: Study subjects.

App #Classes #Stmts |D| Time (s)

SpeedLogic 119 5881 10 0.51
ParKing 543 37478 11 1.84

DPM 10859 939666 12 80.2
Barometer 668 52252 13 1.91
LocTracker 269 24575 14 1.10

Vidanta 2652 162705 15 12.4
MoonPhases 295 44522 16 1.24
DailyBible 3297 332708 17 11.4
DrumPads 1449 126951 17 5.73
QuickNews 3297 332708 17 12.3

Posts 3297 332708 17 13.3
MitulaHomes 1522 120347 20 5.73

KFOR 3708 284581 29 13.9
Equibase 1697 127290 35 7.85

Parrot 1869 120470 64 6.53

excluded from further consideration. Apps for which Monkey
achieved low coverage of the dictionary were also excluded;
this usually happens when an app requires sign-up or sign-in
for use. From the resulting set of apps, we selected 15 subjects
that covered a representative range of values for |D|.

Table I describes the characteristics of these subjects. The
names of the studied apps are listed in column “App”. Columns
“#Classes” and “#Stmts” show the numbers of classes and
statements in Soot’s Jimple IR, excluding some well-known
third-party libraries such as com.google, org.joda and
org.apache. The size of dictionary for each subject is shown
in column “|D|”. As described earlier, we chose apps that
cover a representative range of dictionary sizes, in order to
study their effect on overhead. Column “Time (s)” shows the
running time of the static analysis. The average cost is 5.78
seconds per 100K Jimple statements.

B. Accuracy

For our evaluation, we extended PRIVAID with test-
ing/profiling infrastructure that allows experimentation with
various analysis parameters. That same infrastructure could
be used by app developers to understand the characteristics of
their LDP app analytics and to fine-tune the parameters of the
data collection to achieve the desired trade-offs.

We utilized Monkey [31] to simulate user interactions, by
issuing GUI events every 200 ms until k = 100 GA screen
view events were triggered by those GUI events. For each app,
we installed and ran it on 100 emulators in parallel to simulate
n = 100 users’ interactions with that app. Each of the 100
runs used a different seed for Monkey’s generation of random
GUI events, thus triggering a different sequence of screen view
events. Since we had to repeat this process several times per
app (e.g., to study the effects of sampling and the choice of ε),
in each repetition of the 100 Monkey runs we used the same
set of 100 seeds for Monkey. Note that this randomization for
Monkey is unrelated to the randomization used in PRIVAID
by the local randomizer R to compute the probabilities for
including/excluding events. To account for the variability in
the behavior of R under the same Monkey run and under the
same choice of all other parameters (e.g., ε), every reported
metric was measured 20 times, in 20 independent repetitions of
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Fig. 5: Accuracy of PRIVAID.

the same experiment. The variations among the 20 repetitions
were entirely due to R. For the metrics, we collected the mean
over the 20 repetitions, as well as the 95% confidence interval.

The execution of many thousands of Monkey runs, even
with emulators running in parallel, is prohibitively expensive
for evaluations with a large number of users n. To facilitate
the simulation of thousands of users, we conducted offline
runs based on the traces of real run-time events (i.e., the input
to the randomizer R) gathered during the Monkey runs for
n = 100. There were 100 such traces for each app. We ran
R offline on all such traces 10 times, all with different seeds
for R’s internal randomizations, to generate 1000 estimated
histograms for each app. This simulates the scenario when an
app is used by n = 1000 users. The same process was repeated
for n = 10000. We calculated and reported the accuracy and
overhead based on these histograms.

Figure 5 shows the accuracy of PRIVAID with and without
sampling, with different values of ε and number of users n.
The values of ε match those used in prior work [4]. Recall
that the accuracy is measured based on the largest difference
between the estimated and actual frequencies of all elements in
the dictionary, i.e., maxv∈D |f̂(v)− f(v)|. Here we normalize
this value by dividing it by the total number of actual screen
views f =

∑
v∈D f(v). For each measurement, the y-axes

show the mean of 20 separate repetitions, with 95% confidence
interval. The x-axes show the names of apps sorted by |D|.

More users result in better accuracy. The nature of
differential privacy requires sufficiently large number of users
to be useful. With small values of n, high accuracy cannot
be achieved in our setting (and, in all likelihood, in similar
settings). Figure 5 shows the dramatic improvement in accu-
racy due to the increase in the number of users, for all possible
choices of other parameters. The practical implications are that
thousands of users should be included in the data gathering
in order to obtain accurate results. While the accuracy also
depends on other parameters (e.g., ε), the number of users is a

primary factor that should be considered carefully. Fortunately,
this is not a significant limitation for practical use: most non-
trivial apps have non-trivial numbers of users. For example,
for 14 out of the 15 apps used in our study, the number of
installs according to Google Play is over 100K, with several
apps having more than a million installs.

Larger ε provides better accuracy. The privacy loss pa-
rameter ε controls how much can be learned from a user’s
data. Larger values of ε result in higher privacy loss and better
accuracy. The top chart in Figure 5a is based on a value of
ε = ln(9) (i.e., e

ε
2 = 3). In other words, when an event is

observed, it is reported to the server with probability 3
4 and

each other element of D is reported with probability 1
4 . The

bottom chart in the figure uses a larger value of ε and as a
result the max error is reduced: for example, for ParKing

with n = 100, this reduction is from 0.48 to 0.23. The same
trend also holds without sampling, as shown in Figure 5b.

Sampling does not hurt accuracy. Sampling achieves both
lower overhead and increased user-level privacy. However, a
natural concern is whether sampling will reduce accuracy.
The trend exhibited by our results is that high accuracy can
be achieved with large number of users. For the analysis
parameters used in our evaluation, the estimates are reasonably
accurate when n = 10000: in Figure 5a, the max error
is around 0.05 for ε = ln(9) and 0.02 for ε = ln(49).
Practically, this means that for any event, the estimated relative
frequency (as percentage of the total number of events) is a
few percentage points off its real value.

C. Overhead

Figure 6 shows the number of events sent to the GA server,
relative to the number of real events triggered by calls to send

in the app code. In other words, we consider how many events,
on average, are produced by the local randomizer R for each
real event. We only report the measurements for 10000 users
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Fig. 6: Overhead of PRIVAID.

as the conclusions for other values of n are similar. The y-axes
show the mean of 20 separate repetitions of each experiment.

Sampling reduces overhead. Recall that for each actual
event, we expect (d − 1 + e

ε
2 )/(1 + e

ε
2 ) events to be sent

to the server; here d is the size of the dictionary. The results
in Figure 6b meet this expectation. For example, for ParKing
we have d = 11 and PRIVAID sent about 3 events per actual
event when ε = ln(9). Sampling can reduce this cost by a
magnitude of k/t, as we are sending only t events per k
actual events. Figure 6a shows that, by using sampling, the
overhead of additional events introduced by the randomizer
R can be controlled well. Together with the accuracy results
from Figure 5a, these experiments indicate that practical trade-
offs between accuracy, overhead, and privacy can be achieved
when the number of users n is reasonably large.

VIII. RELATED WORK

Privacy has gained growing attention in various fields of
software engineering [33] such as testing [34]–[37] and defect
prediction [38]–[40]. Budi et al. [35] propose k-anonymity-
based generation of new test cases while preserving their origi-
nal behaviors. Their following work [37] extends the approach
to be applicable to evolving programs. MORPH [38] preserves
data privacy of software defects in a cross-company scenario,
by perturbing instance values. CLIFF+MORPH [39] removes
dominant attributes for each class before perturbation. Li et
al. [40] adopt a sparse representation obfuscation for defect
prediction, while preserving privacy of data from multiple
sources. Although our overall goal is similar, we aim to protect
data gathered by analytics frameworks from mobile apps using
differential privacy techniques.

Several examples of prior work on differential privacy were
already discussed earlier. There also exist several practical
realizations of LDP for data analytics. Google’s RAPPOR
combines randomized responses and Bloom filters to encode
and identify popular URLs in the Chrome browser without
revealing users’ browsing habits [4], [21]. Apple applies DP
for gathering analytics data for emoji and quick type sugges-
tions, search hints, and health-related usage [5], [6]. Samsung
proposed the Harmony LDP system to collect data from smart
devices for both basic statistics and complex machine learning
tasks [41]. Microsoft uses LDP to collect telemetry data over
time across millions of devices [42]. We are not aware of
any efforts to apply these techniques to analytics for Android

apps. One significant challenge is that, unlike this prior work,
we need to assume that the analytics infrastructure is LDP-
unaware. The solution presented in this paper achieves LDP
for Google Analytics event frequencies without any changes
to the GA libraries on the users’ devices, or to the GA servers.

In addition to frequency estimation, many other analyt-
ics problems have been considered: for example, heavy hit-
ters [24], [25], distribution estimation [26], clustering [27],
learning [43], and convex optimization [44]. This rich body of
work presents interesting opportunities for sophisticated LDP
analytics for mobile apps.

The problem considered in our work is similar in spirit
to software analytics [45] which aims to help developers
learn from software data such as app store data [46]–[50],
code repositories [51]–[56] and bug/security reports [57]–
[60]. Many companies utilize error/crash reporting systems
to collect various categories of execution information from
their users; for example, Apple collects “details about app or
system crashes, freezes, or kernel panics” from their macOS
users [61]. Lu et al. [62] and Liu et al. [63] leverage an
Android-native application management app with over 250M
users for app usage pattern mining. Böhmer et al. [64] conduct
analysis on usage logs of thousands of users for three popular
apps. PMP [65] is deployed to collect users’ data protection
decisions to help make privacy recommendations for over
90K users. GAMMA [66] continuously gathers and analyzes
execution information from a large number of users through
lightweight instrumentation. Liblit et al. [67] gather execution
data from a large distributed community of users running a
program remotely. Their approach samples the data and sends
it to a central database for later isolation of bugs.

IX. CONCLUSIONS AND FUTURE WORK

We demonstrate that LDP features can be added to exist-
ing app analytics in Android apps without changes to the
underlying analytics infrastructure. The proposed PRIVAID
approach increases user privacy, requires little effort from app
developers, and does not sacrifice analytics accuracy.

There are many interesting software analytics problems
for mobile apps. Rather than simple frequency counts, more
powerful analyses could be performed [24]–[27], [43], [44].
Solutions to these problems should achieve practical analyses
of real app data, which requires both theoretical and empirical
understanding of trade-offs between privacy, accuracy, and



cost. There should also be strong tool support for app de-
velopers to enable them to deploy such solutions with ease
and confidence. In a world with increasing privacy threats
and demands, a research agenda focusing on these problems
defines an important direction for future work.
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