
All That Glitters Is Not Gold: Improving Availability
and Practicality of Exception-Based Memory Models

Ohio State CSE technical report #OSU-CISRC-4/16-TR01, April 2016

Minjia Zhang
Ohio State University

zhanminj@cse.ohio-state.edu

Swarnendu Biswas
Ohio State University

biswass@cse.ohio-state.edu

Michael D. Bond
Ohio State University

mikebond@cse.ohio-state.edu

Abstract
Modern shared-memory languages such as Java and C++
provide weak or undefined semantics for executions with
data races. Existing work proposes stronger memory consis-
tency models that ensure strong semantics but may throw a
consistency exception in the presence of a data race. Even in
well-debugged programs, consistency exceptions may occur
unexpectedly, hurting availability.

This paper is the first to consider the problem of avail-
ability for memory models that throw data races. We intro-
duce extensions to existing approaches that provide consis-
tency based on region serializability; these extensions enable
avoiding most consistency exceptions. To improve avail-
ability further, we introduce a new memory model called
SIx based on snapshot isolation of code regions and a new
approach called Snappy that provides SIx. We introduce
two variants of Snappy that provide different performance–
availability tradeoffs, while still ensuring SIx.

Our evaluation on real Java programs shows that our ap-
proaches provide new and compelling points in performance–
availability tradeoff space. This work thus represents a
promising direction for dealing with the key issue of avail-
ability for memory consistency based on fail-stop semantics.

1. Introduction
In order to achieve high performance, compilers and archi-
tectures for shared-memory parallel programs perform op-
timizations, such as eliminating and reordering memory ac-
cesses, assuming no dependences with concurrent threads.
These optimizations are only restricted from reordering
across synchronization operations (e.g., lock acquire and re-
lease). This approach allows shared-memory languages and
hardware to provide strong guarantees—sequential consis-
tency (SC), as well as serializability of code regions bounded
by synchronization operations—for program executions that
are free of data races, which are conflicting accesses to the
same variable that are not ordered by synchronization opera-
tions. However, for executions with data races, compiler and
hardware optimizations lead to erroneous, unpredictable, of-
ten undefined behavior [2, 17]. These guarantees are for-

malized in the DRF0 memory consistency model [4], which
ensures strong semantics for data-race-free executions only.
Java and C++ and other shared-memory languages provide
variants of DRF0 [19, 55].

To address this concern, researchers have proposed mem-
ory consistency models that provide strong semantics for
all program executions. Notable among these are mod-
els that provide consistency based on serializability of
synchronization-free regions (SFRs), which we call region
serializability (RS), and use the terms region and SFR inter-
changeably. Under RS, an execution is equivalent to some
execution in which SFRs (executed sequences of instruc-
tions that do not contain synchronization operations) ap-
pear to execute serially, i.e., without interruption by other
threads [14, 53, 61]. RS is appealing because (1) it provides
the same strong guarantees for all executions that DRF0
already provides but only for race-free executions, and (2)
it does not restrict compiler and hardware optimizations,
which already respect synchronization operations as region
boundaries. However, enforcing RS seems inherently prob-
lematic due to supporting unbounded speculative execution.
Researchers have thus introduced a memory consistency
model that we call RSx that treats data races as errors, po-
tentially throwing a consistency exception for a data race,
but otherwise ensuring RS [14, 53]. (Furthermore, other ap-
proaches treat some or all data races as errors [31, 68, 80].)

Problem. Under RSx, data races are errors, just like buffer
overflows and other memory errors in memory- and type-
safe languages such as Java. In contrast, under DRF0, data
races lead to undefined semantics, like buffer overflows in
unsafe languages such as C++. In an RSx-by-default world,
programmers will need to identify and eliminate most or
all data races that cause consistency exceptions during test-
ing, just as programmers now debug in response to excep-
tions from buffer overflows and other memory errors in safe
languages. Nonetheless, even well-tested software may con-
tain unknown data races that may manifest only under cer-
tain production environments, inputs, or thread interleav-
ings [46, 63, 76], leading to unexpected consistency excep-

1

tions. Unexpected exceptions hurt the availability (this pa-
per’s term for exception freedom) of production systems.
Our approach. This paper is the first to our knowledge to
consider and address the problem of availability in memory
consistency models that generate consistency exceptions.
We first introduce approaches that avoid consistency excep-
tions under RSx. We modify approaches from prior work,
called FastRCD and Valor, that provide RSx [14]. Our ap-
proaches, called FastRCD-A and Valor-A, introduce waiting
at program points that detect conflicts, in an effort to tolerate
the conflict and avoid raising an exception. An evaluation on
benchmarked versions of large, real Java programs shows
that FastRCD-A and Valor-A improve availability substan-
tially, compared with their counterparts that do not wait at
conflicts. However, RSx is a strong model that may inher-
ently limit availability and/or cost and complexity, whether
implemented purely in software or with hardware support.

We thus introduce a new memory model called SIx based
on snapshot isolation of regions (SI). While SI is weaker
than serializability, it ensures region isolation and provides
significantly stronger guarantees for racy executions than the
weak or undefined semantics provided by DRF0.

To provide SIx, we introduce an approach called Snappy
that correctly “tolerates” read–write conflicts by deferring
handling of the conflicts until region end. Our evaluation
shows that Snappy provides even better availability than
FastRCD-A and Valor-A, although it incurs high overhead
in order to detect conflicts precisely.

Our final insight is that Snappy can detect read–write
conflicts imprecisely (false positives but no false negatives)
without jeopardizing support for SIx. We leverage this idea
to introduce a new approach, called Snappy-I, that rep-
resents variables’ last reader information imprecisely, en-
abling lower run-time costs and complexity than the other
approaches. However, Snappy-I’s reduced precision gives
up most of the availability gains that Snappy-P provides
over the approaches that provide RSx.

Overall, our exploration and evaluation of the design
space provides the following main conclusions. First, by
waiting at conflicts, approaches that support RSx can in-
crease availability substantially. Second, providing the SIx
model enables higher availability than RSx. Third, relax-
ing precise conflict detection while providing SIx leads to
significant performance benefits, but gives up most of the
availability gains of SIx over RSx.

Although the overheads of these software-only approaches
are too high for many production settings, future work could
leverage custom hardware support to provide low-overhead
RSx and SIx. We expect that supporting SIx instead of RSx
could enable simpler hardware designs, just as Snappy-I
yields a simpler software design than its competitors.
Contributions. To our knowledge, this paper is the first to
consider the problem of availability for memory consistency
models that throw consistency exceptions. The paper makes
the following contributions:

• We introduce approaches for providing RSx that differ
from prior work in that they wait at conflicts in order to
avoid exceptions.
• We propose a new memory consistency model called SIx

that is weaker than RSx but still ensures isolation of
regions for racy executions.
• We present Snappy, an approach that enforces SIx. We

introduce two designs with differing tradeoffs: Snappy-P
uses full precision, while Snappy-I tracks reads impre-
cisely, trading availability for performance.
• We evaluate and compare availability, run-time perfor-

mance, scalability, and other characteristics of our ap-
proaches and existing approaches that provide RSx and
SIx. Our results show that our approaches provide new
and compelling points in the performance–tradeoff space.

2. Background and Motivation
This section motivates the benefits of memory consistency
based on serializability of code regions. It then describes two
key challenges with consistency based on region serializabil-
ity: (1) availability and (2) run-time costs and complexity.

2.1 Memory Consistency Models
Modern shared-memory languages such as Java and C++
provide variants of the DFR0 memory model, introduced by
Adve and Hill in 1990 [4, 19, 55]. DRF0 (and its variants)
provide a strong guarantee for well-synchronized, or data-
race-free, executions: serializability of synchronization-free
regions (SFRs) [2, 53].1 An execution has a data race if
two accesses conflict (accesses to the same variable and at
least one is a write) and are not ordered by the happens-
before relation (the union of program and synchronization
order) [44]. An SFR is a dynamic sequence of executed in-
structions bounded by synchronization operations (e.g., lock
acquires and releases) with no intervening synchronization
operations. An execution is region serializable if it is equiv-
alent to some serial execution of regions (i.e., some global
order of non-interleaved regions).

However, for executions with data races, DRF0 pro-
vides weak or no behavior guarantees [2, 17, 18, 20, 21].
C++’s memory model gives undefined semantics for data
races [19]. The Java memory model (JMM), on the other
hand, provides well-defined but weak semantics for racy ex-
ecutions, in an effort to preserve memory and type safety [55].
However, as researchers later discovered, the JMM pre-
cludes common Java virtual machine (JVM) compiler op-
timizations [71]. The state of practice is that JVMs perform
optimizations that violate the JMM [21]. According to Adve
and Boehm, “The inability to define reasonable semantics
for programs with data races is not just a theoretical short-
coming, but a fundamental hole in the foundation of our
languages and systems” [2].

1 DRF0 also provides sequential consistency (SC) [45] for DRF0 execu-
tions. SFR serializability implies SC.

2

Despite much effort by researchers and practitioners, data
races are difficult to avoid, detect, fix, and eliminate (e.g., [1,
14, 22, 23, 25, 26, 31, 33, 34, 36, 41, 58–60, 65, 67, 70, 77,
78, 82]). Data races often manifest only under certain envi-
ronments, inputs, and thread interleavings, allowing them to
go undetected [38, 52, 76, 83]. Data races thus occur un-
expectedly in production systems, sometimes with severe
consequences [46, 63, 76]. They often indicate concurrency
bugs such as atomicity, order, and sequential consistency vi-
olations [52]. Thus, systems that execute with weak or un-
defined semantics due to data races are not just a problem in
theory but in practice.

In spite of the shortcomings of DRF0-based memory
models, languages and systems continue to use them in or-
der to maximize performance. DRF0 allows compilers and
hardware to perform uninhibited intra-thread optimizations,
as long as optimizations do not cross synchronization op-
erations. Any attempt to provide stronger consistency must
consider the impact of restricting optimizations.

Sequential consistency. Much work has focused on provid-
ing sequential consistency (SC)2 as the memory consistency
model [2, 3, 37, 47, 48, 57, 66, 72, 74, 75]. Enforcing end-
to-end SC (i.e., SC with respect to the original program)
requires restricting optimizations by both the compiler and
hardware. (In contrast, providing SC in the compiler or hard-
ware alone does not provide end-to-end SC.)

Although SC is certainly stronger than the undefined or
weak behaviors that DRF0 provides for racy executions,
it is not a particularly strong model. Programmers tend to
think in terms of operations that are larger than individual
memory accesses, expecting a multi-access operation such
as x++ or buffer[index++] = 42 to execute atomically
(regardless of the actual memory model). Adve and Boehm
argue that “programmers do not reason about correctness of
parallel code in terms of interleavings of individual memory
accesses” and that SC “does not prevent common sources of
concurrency bugs . . . ” [2].

Region serializability. An alternative to DRF0 and SC is
memory consistency based on region serializability. No-
tably, region serializability of SFRs, which we abbreviate
as RS, extends the same guarantees to all executions that
DRF0 provides for race-free executions only. Furthermore,
approaches that provide RS can generally allow uninhibited
compiler and hardware optimizations, which already do not
cross synchronization boundaries.

Since enforcing RS or detecting all data races are both
expensive (Section 9), prior work provides a memory model
that either (1) ensures RS or (2) generates a consistency
exception—but only if there exists a data race. This paper
refers to this memory model as RSx. RSx allows for some
flexibility: an approach does not need to incur the cost and
complexity of soundly and precisely detecting all data races

2 Under SC, operations appear to interleave in some order that conforms to
program order [45].

nor all RS violations. Prior work typically provides RSx
by checking for region conflicts [14, 53]. A region conflict
occurs when one region’s access conflicts with an accessed
performed by another ongoing region.3

Although RSx provides strong, well-defined semantics,
supporting it incurs a major disadvantage: the possibility of
consistency exceptions. Another challenge is the cost and
complexity of detecting region conflicts.

2.2 Drawbacks of Providing RSx
Availability. RSx provides well-defined semantics even for
racy executions. On the other hand, any racy execution can
throw a consistency exception, essentially trading availabil-
ity for strong, well-defined semantics. Data races occur un-
expectedly, and then may or may not manifest unexpectedly
as consistency exceptions depending on whether the race
manifests as a region conflict.

Under RSx, data races are potential fail-stop errors, just
like buffer overflows and null pointer exceptions in memory-
and type-safe languages such as Java. Ideally, programmers
would eliminate nearly all data races by addressing consis-
tency exceptions encountered during testing and early pro-
duction runs (e.g., alpha and beta testing). An additional
mitigating factor is that programmers or automatic tech-
niques may be able to handle consistency exceptions in a
way that preserves availability. Nonetheless, we expect that
consistency exceptions will occur unexpectedly and affect
availability—just like null pointer exceptions—which may
frustrate developers and users more than the (often silent and
unknown) consequences of racy executions under DRF0.
Prior work on memory models that generate consistency ex-
ceptions has not considered the issue of availability nor how
to reduce exceptions [14, 31, 53, 56, 73].
Performance. Existing work that provides RSx incurs sig-
nificant cost and complexity, whether implemented in hard-
ware or software. Conflict Exceptions augments the cache
coherence protocol in order to detect region conflicts, and
adds on-chip network traffic and space overheads, making
cache evictions and region boundaries more expensive [53].
Biswas et al. present two software-only approaches for pro-
viding RSx [14]. The first, FastRCD, slows down executions
by 3.7X on average. The second approach, Valor, slows exe-
cutions by 2.0X on average, through lazy detection of read–
write conflicts. While advantageous for performance, it can-
not tolerate read–write conflicts leading to consistency ex-
ceptions, although we find this problem is not substantial in
practice on average. Valor incurs two other disadvantages: it
provides imprecise exceptions and cannot easily handle un-
safe languages such as C++ (Section 4.2). Common to exist-
ing software and hardware approaches for providing RSx is
the cost and complexity of tracking the last region(s) to read
each variable (for example, Valor has to log reads [14]), in
order to detect or infer read–write conflicts accurately.

3 Two memory accesses conflict if they access to the same variable, by
different threads, and at least one is a write.

3

3. Goals and Overview
This paper’s goals are to explore alternatives to current ap-
proaches that provide RSx and to develop approaches that
provide better performance–availability tradeoffs than ex-
isting approaches. Our evaluation shows that current ap-
proaches have inherent limitations. We explore not only ap-
proaches that provide RSx but also a memory model that is
weaker than RSx but is still principled, meaning that it pro-
vides well-defined semantics at region granularity, and does
not inhibit compiler and hardware optimizations.

Section 4 develops mechanisms for avoiding consistency
exceptions under RSx, which improve availability signifi-
cantly. In an effort to improve availability further, Section 5
introduces a memory model called SIx. Section 6 presents
two approaches for providing SIx that represent different
points in the performance–availability space.

4. Increasing Availability Under RSx
This section extends two analyses from prior work [14] that
provide RSx, FastRCD and Valor, in order to avoid consis-
tency exceptions while still providing RSx. While these ex-
tensions by themselves are not huge intellectual contribu-
tions, our work is the first to introduce and evaluate them.

4.1 FastRCD and FastRCD-A
FastRCD is an analysis from prior work that provides RSx.
Our presentation of FastRCD, including notations and algo-
rithms, is closely based on prior work’s presentation [14].
We extend FastRCD to wait, instead of throwing consistency
exception, when it detects a region conflict. We call the re-
sulting analysis FastRCD-A (Available).

FastRCD uses epoch optimizations from an existing data
race detection analysis called FastTrack [36]. The analysis
maintains, for each shared variable, (1) the last region that
wrote the variable and (2) the last region(s) (one per thread)
that read the variable since the last write. The analysis iden-
tifies regions by maintaining a per-thread logical clock for
each thread; a thread’s clock starts at 1, and the analysis in-
crements it every time the thread executes a region boundary.
FastRCD uses the following notation:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns the epoch c@T, where c is the current
clock of thread T.

Wx – Represents last-writer metadata for variable x, as the
epoch c@t, which means t last wrote x at time c.

Rx – Represents last-reader metadata for x, as a read map
that maps each thread to a clock value (or 0 if not present
in the map).

Our FastRCD-A analysis extends FastRCD by waiting at de-
tected region conflicts, until either (1) the region conflict no
longer exists, in which case the analysis proceeds, or (2) the
analysis detects a cyclic waiting dependency, in which case
the analysis throws a consistency exception. Algorithms 1, 2,

Algorithm 1 REGION BOUNDARY [FastRCD-A]: thread
T’s region ends

1: incClock(T) .Increment value returned by clock(T)

Algorithm 2 WRITE [FastRCD-A]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) = c then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then .Read–write conflict?

10: if deadlocked then
11: throw consistency exception
12: else
13: Retry from line 1
14: Wx← epoch(T) .Update write metadata
15: Rx← ∅ .Clear read metadata

Algorithm 3 READ [FastRCD-A]: thread T reads x
1: if clock(T) 6=Rx[T] then .First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) = c then .Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) .Update read metadata

and 3, show FastRCD-A’s analysis at region boundaries and
program writes and reads, respectively.

Next, we describe the high-level operation of FastRCD-
A’s (and FastRCD’s) analysis at program reads and writes.
The first if statement in Algorithms 2 and 3 checks whether
this region has already written or read this variable, respec-
tively, in which case the algorithm needs not check for con-
flicts or update read/write metadata. Otherwise, the analysis
checks for write–write and then read–write conflicts (Algo-
rithm 2) or write–read conflicts (Algorithm 3) by checking
whether the last writer and reader regions are still ongo-
ing (i.e., clock(t) = c). Note that checking for read–write
conflicts involves checking for conflicts with every other
thread’s “last reader” region of x. If a conflict is detected,
FastRCD-A tries to tolerate the region conflict by letting T
wait (i.e., retry from line 1). After checking for conflicts, the
analysis at a write or read updates the variable’s write or read
metadata, respectively. Additionally, the analysis at a write
clears the read metadata. Instrumentation atomicity needs to
be guaranteed at these operations, as discussed in Section 7.

FastRCD differs from FastRCD-A in how it handles con-
flicts (lines 7 and 13 in Algorithm 2 and line 7 in Algo-

4

Figure 1. FastRCD-A avoids/tolerates some region conflicts: the
read at (1) will cause a region conflict, but by waiting until (2), it
succeeds without a consistency exception.

rithm 3). Instead of checking for a deadlock, FastRCD sim-
ply throws a consistency exception.

Figure 1 shows an example of how FastRCD-A works.
The boxes represent program regions in each thread; time
flows downward. Suppose that thread T2 has not accessed
x in its current region before reading x at time (1). When
T2 tries to read x at (1), it causes a region conflict with the
previous write to x by T1 in region Ri, because T1 is still
executing Ri. T2 handles the region conflict by waiting until
T1 finishes its region (Ri), at which point T2 retries its read
at time (2) and continues execution safely.

Waiting-induced deadlocks. Due to waiting, FastRCD-A
can run into waiting-induced deadlocks. FastRCD-A main-
tains a global region wait-for graph in order to detect these
deadlocks. The graph’s nodes represent regions labeled with
an epoch c@t, and the graph contains at most one region
per node. Each node has at most one wait-for edge from
and to another region. When one thread needs to wait for
another thread to finish, a wait-for edge is added into the
wait-for graph. An edge-chasing deadlock detection algo-
rithm is used to find cycles in the graph [42].

Precise exceptions. FastRCD-A (and FastRCD) provide
precise consistency exceptions, meaning that it suspends
a thread’s execution immediately before it performs a con-
flicting access. Precise exceptions are easier to handle and
debug than imprecise exceptions [14].

4.2 Valor and Valor-A
As prior work and our evaluation show, FastRCD adds high
run-time overhead, which is largely due to the cost of track-
ing last-reader metadataRx. Biswas et al. introduce an anal-
ysis called Valor that elides tracking of x’s last-reader meta-
data [14]. Instead, Valor logs each read in a per-thread read
log, and infers read–write conflicts lazily at region end.

We extend Valor to wait at detected conflicts instead of
throwing a consistency exception. We call the resulting anal-
ysis Valor-A (Available). Like FastRCD-A, Valor-A waits at
detected write–write and write–read conflicts until the con-
flict no longer exists or the analysis detects a deadlock due
to waiting on conflicts. However, unlike FastRCD-A, Valor-
A cannot wait when it infers a read–write conflict: both the
read and write accesses have already executed, so it is too
late to try to avoid the conflict.

Appendix A presents the analysis for Valor-A, which is
not pertinent to understanding the rest of this paper. Valor-

A (and Valor) therefore throws imprecise consistency ex-
ceptions for read–write conflicts. Imprecise exceptions can
be problematic because the reader region has already ex-
ecuted using inconsistent values. This problem is particu-
larly acute in the context of a memory- and type-unsafe lan-
guage such as C++, where so-called “zombie” regions can
lead to corruption that would not be possible in any RS ex-
ecution [14, 27, 40]. Furthermore, imprecise exceptions are
difficult to use during development and debugging.

Thus, FastRCD is amenable to avoiding consistency excep-
tions, but it adds high run-time overhead. Valor improves
performance by inferring read–write conflicts lazily, but it is
not as well suited to avoiding consistency exceptions.

5. SIx: A New Strong Memory Model
The previous section presented our extensions to analyses
that provide RSx, in an effort to avoid consistency excep-
tions as much as possible. Our evaluation shows that Fast-
RCD-A and Valor-A generate significantly fewer exceptions
than their non-waiting counterparts.

Can an approach provide availability comparable to or
better than FastRCD-A’s and performance comparable to
Valor-A’s? To achieve this goal, we relax consistency guar-
antees while still providing strong, principled semantics.
This section introduces a new memory consistency model
called SIx, and the next section introduces an analysis for
supporting SIx.

This new SIx memory model is based on providing snap-
shot isolation of regions, or SI. SI is weaker than region se-
rializability (RS): under SI, a region that reads a variable
can be concurrent with a region that later writes the variable.
Although SI is weaker than RS, prior work (in database sys-
tems) has observed that behaviors that lead to SI instead of
RS semantics are rare in practice [35, 50]. Our insight here is
that an approach that provides SI can potentially have lower
run-time costs and fewer conflicts because it does not need
to detect read–write conflicts accurately.

5.1 Snapshot Isolation of Regions
Prior work first introduced SI in the context of database
processing [11]. Most of the database literature defines SI
operationally. Here we give a definition based on execution
equivalence, followed by a definition of conflict SI, which
is a sufficient condition for SI. Both definitions are based
closely on prior work.
Snapshot isolation. An execution is SI if it is equivalent to
(has the same outcome as) some serial execution in which
(1) each region R’s reads4 and writes each execute together
as a group (without intervening accesses), (2) each region
R’s reads execute before its writes, and (3) another region
Q’s writes execute between R’s reads and writes only if R
and Q write distinct sets of variables [43].

4 These reads do not include reads from variables that the region has already
written. These “local” reads always read the value that the region wrote.

5

T1 T2
int t = x + y + 1; (1) int t = x + y + 1; (1)
y = t; x = t;

(a) SI and SC but not RS.

T1 T2
int t = x + 1; (1) int t = x + 1; (1)
x = t; x = t;

(b) SC but not SI (and thus not RS).

T1 T2
x = 1; y = 1;
int t = y; (0) int t = x; (0)

(c) SI but not SC (and thus not RS).

Figure 2. Example executions comparing SI to RS and SC. Each thread executes just one region. Shared variables x and y are initially 0.
Values in parentheses are the result of evaluating a statement’s right-hand side.

In contrast, serializability demands equivalence to a serial
execution in which all of a region’s accesses (reads and
writes) execute together without interruption [61, 62].

Figure 2 shows a few examples to help understand the dif-
ference between RS and SI as well as sequential consistency
(SC). Figure 2(a) shows by example that SI is weaker than
RS. In contrast, Figure 2(b)’s execution violates SI (and thus
RS): under SI, the regions cannot be concurrent because their
write sets overlap. SI provides isolation, but not necessarily
sequential consistency (SC), as Figure 2(c) shows. Despite
not subsuming SC, SI is likely to be more intuitive (in ad-
dition to more practical to enforce) than SC: programmers
already reason about code regions, and, while SI provides
isolation of regions, SC subjects programmers to subtle rea-
soning about interleavings of memory accesses (Section 2).

Conflict SI. SI, as defined above, is not directly useful for
designing approaches that provide SI. Instead, we use a
slightly stronger property, conflict SI, a sufficient condition
for SI that a dynamic analysis can check on the fly. Conflict
SI is analogous to conflict serializability [13, 79].

The following definitions, which lead up to conflict SI,
are closely based on prior work [5, 6]. Adya’s dissertation
proves that conflict SI is a sufficient condition for SI [5].

A multi-threading execution consists of reads and writes
executing in regions. The following notation describes read
and write operations in an execution:

• wi(xi): a write to variable x by region Ri

• rj(xi): a read from x by region Rj , which sees the value
written by region Rj (i = j is allowed)

The following definition captures the notion of ordering in a
multi-threading execution:

Definition 1 (Time-precedes order). This order ≺t is a par-
tial order over an execution’s operations such that:

1. si ≺t ei, i.e., the start of a region precedes its end.
2. For any two regions Ri and Rj , either ei ≺t sj or

sj ≺t ei. That is, the end of one region is always ordered
with start of every other region.

Definition 2 (Conflict SI). An execution is conflict SI if the
following conditions hold:

1. Two concurrent regions cannot modify the same variable.
That is, for any two writes wi(xi) and wj(xj) such that
i 6= j, either ei ≺t sj or ej ≺t si.

2. Every read sees the latest value written by preceding
regions. That is, for every ri(xj) such that i 6= j:5

(a) ej ≺t si and
(b) for any wk(xk) in the execution such that j 6= k,

either si ≺t ek or ek ≺t sj .

In the above definition, changing si ≺t ek (in part 2b) to
ei ≺t sk yields the definition of conflict serializability.

5.2 A Memory Model Based on Snapshot Isolation
We introduce a new memory model called SIx based on
snapshot isolation of regions (SI). Similar to RSx (Sec-
tion 2.1), under SIx, an execution either provides SI or
throws a consistency exception—but only if the execution
has a data race. In particular, SIx guarantees that each exe-
cution conforms to one of the following:

• a consistency exception, but only if the execution has a
data race; or
• SI of regions if the execution does not throw a consis-

tency exception.

If an execution is data race free, SIx inherently ensures not
only SI but also RS. SIx is strictly stronger than DRF0, and it
relaxes semantics from RS to SI only for racy regions, which
have undefined or weak semantics under DRF0.

6. Snappy: Runtime Support for SIx
This section introduces Snappy, a novel, software-only ap-
proach that provides the SIx memory consistency model.
Like FastRCD-A and Valor-A, Snappy detects and waits at
write–write and write–read conflicts. Snappy differs from
FastRCD-A and Valor-A—and prior work in general—in
two major ways. First, its support for SIx enables “toler-
ating” read–write conflicts by deferring waiting to the end
of the writer region. Second, as a result of its handling of
read–write conflicts, Snappy can detect read–write conflicts
imprecisely, enabling less costly tracking of last reader(s),
while still preserving SIx (no deadlock without a data race).

6.1 Tolerating Read–Write Conflicts
During a region’s execution, Snappy tracks each shared
variable’s last writer and last reader(s) accurately (just like
FastRCD-A). Last-writer tracking allows Snappy to detect
write–write and write–read conflicts precisely. Snappy han-
dles read–write conflicts differently from both FastRCD-A
and Valor-A: Snappy defers waiting on these conflicts un-
til the end of the executing region, which still preserves

5 if i = j, ri(xj) sees the value from the latest wi(xi).

6

Algorithm 4 REGION BOUNDARY [Snappy]: T’s region
ends

1: incClock(T) .Last region done; not ready to start next region
2: for each t 7→ c in T.waitMap do
3: while clock(t) = c do .Read–write conflict still exists?
4: deadlocked← checkIfDeadlocked()
5: if deadlocked then
6: throw consistency exception
7: T.waitMap← ∅
8: incClock(T) .Ready to start next region

SIx. With this design, Snappy opens new avenues for the
improvement of availability and performance of exception-
based memory models.

To present Snappy, we reuse clock(T), epoch(T), Rx,
and Wx from Section 4. In addition, we add the following
notation specific to Snappy:

T.waitMap – Represents the regions that thread T is wait-
ing on. T.waitMap is a map from a thread t to the latest
clock value c of t that executed a read that conflicts with
a write in T’s current region. Clock values for threads not
mapped in T.waitMap are considered to be 0.

Region boundaries. To support waiting at region bound-
aries, Snappy uses per-thread clocks to differentiate region
execution from waiting at a region boundary. In particular,
thread T’s clock represents two execution states of T:

• clock(T) is odd if the region is executing. Note that
initially clock(T) is 1.
• clock(T) is even if the region has finished executing

but is waiting to tolerate read–write conflicts at a region
boundary.

Algorithm 4 shows how Snappy maintains this invariant by
incrementing clock(T) both before and after a region waits
for tolerating any remaining read–write conflicts. While
clock(T) is even, the algorithm checks whether read–write
conflicts still exist; if the reader region is still executing
(i.e., if clock(t) = c), the algorithm waits until the reader
region finishes executing, throwing a consistency exception
if Snappy detects deadlock.
Writes and reads. Algorithms 5 and 6 show the analysis
that Snappy performs at each program write and read, re-
spectively. The analysis differs from the analysis for Fast-
RCD-A (Algorithms 2 and 3) in the following ways. First,
in Snappy, a thread T waits at write–write and write–read
conflicts (line 3 in Algorithm 5 and line 3 in Algorithm 6)
for the writer region (executed by t) to finish any waiting at
its region boundary. In order to take into account the two in-
crements to clock(t) at a region boundary, T waits until the
writer thread t’s clock is at least two greater than the vari-
able’s clock c, i.e., clock(t) ≥ c + 2.

Second, when T detects a read–write conflict (line 9 in
Algorithm 5), instead of waiting, it records the conflicting
thread t’ and its current clock c’ in T.waitMap. T.waitMap

Algorithm 5 WRITE [Snappy]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) ≤ c+ 1 then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then .Read–write conflict?

10: T.waitMap[t′]← c′

11: Wx ← epoch(T) .Update write metadata
12: Rx← ∅ .Clear read metadata

Algorithm 6 READ [Snappy]: thread T reads x
1: if clock(T) 6=Rx[T] then .First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) ≤ c+ 1 then .Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) .Update read metadata

needs to maintain only the latest clock value for every other
thread t’ (multiple values are possible due to waiting on
multiple threads), so the analysis updates T.waitMap only
if the new value is greater than the old value.
Examples. Figure 3 shows examples of how Snappy en-
forces SIx. In the figure, concurrent regions access the
shared variables x and y. The gray dashed lines along with
the synchronization operations, acq(l) and rel(l), indicate
SFR boundaries. Ri and Rj are SFR identifiers, where i and
j are per-thread clocks for the respective threads. In Fig-
ure 3(a), T2 waits on the read–write conflict at its region
boundary, but T1 is unable to make progress due to a cyclic
dependence. In Figure 3(b), a cyclic dependence exists, but
each region can reach its region boundary, allowing each
to proceed. In contrast, FastRCD-A deadlocks for this ex-
ample. In Figure 3(c), Snappy deadlocks due to a cycle of
transitive dependences involving two variables. Each thread
gets stuck waiting: T1 and T3 at accesses, and T2 at a region
boundary.

6.2 Detecting Read–Write Conflicts Imprecisely
Although tolerating read–write conflicts allows Snappy to
avoid exceptions that FastRCD-A and Valor-A encounter,
our evaluation shows that it incurs about the same (high)
overhead as FastRCD-A in order to detect all conflicts ac-
curately when they occur. In developing Valor, prior work
shows that the main cost of FastRCD is in tracking the last
reader(s) for each variable precisely to detect read–write
conflicts accurately [14].

This section proposes an alternate design for Snappy that
focuses on the approximation of the precise last reader(s)

7

(a) Snappy deadlocks. (b) Snappy does not deadlock. (c) Snappy deadlocks.

Figure 3. Examples showing how Snappy works. Dashed lines indicate where Snappy increments its clock. The exact synchronization
operations (e.g., acq(m) versus rel(l)) are arbitrary and not pertinent to the examples.

to improve performance. For clarity, the rest of the paper
refers to the design of Snappy described in Section 6.1 as
Snappy-P (Precise) and the alternate design introduced here
as Snappy-I (Imprecise).

The key insight of having imprecise readers is to let
a conflicting write conservatively wait on potential read–
write conflict(s) if the write cannot infer accurate read–
write conflict(s). Importantly, Snappy-I still provides SIx:
although Snappy-I may wait on a false read–write conflict,
any deadlock must include at least one (true) write–read or
write–write conflict (this fact holds for Snappy-P as well as
Snappy-I), indicating a data race, as Appendix B shows.

In the design of Snappy-P from Section 6.1, each variable
x has metadata both for writes (Wx) and reads (Rx). Both
are needed for precise tracking of last reader(s). In particular,
the read metadata needs to be inflated into a read map when
there are multiple concurrent reader regions. Since Snappy-I
does not require precise detection of read–write conflicts, it
allows for a simpler and more efficient design.
Metadata representation. Like Snappy-P, Snappy-I main-
tains the epoch of the last writer for each shared variable x.
However, it maintains precise last reader information only if
there exists a single reader; for multiple readers, it does not
maintain any information about them (so any ongoing region
is a potential reader). As a result, Snappy-I represents a vari-
able’s last writer and reader metadata into a single unit of
metadata (e.g., a single metadata word). This metadata has
one of the following values:

WrExc@t : x was last accessed by region c@t, and that region
performed a write to x.

RdExc@t : x was last accessed by region c@t, and that region
performed only reads to x.

RdSh : At some point, there were multiple concurrent
reader regions. Any ongoing region may have read x,
but no ongoing region may have written x.

The first write in region c@t updates the variable’s metadata
to WrExc@t. Similarly, the first read in c (if there is no prior
write in the same region) updates the metadata to RdExc@t. If
a second read from a different thread reads the variable while
the first read’s region is still ongoing, Snappy-I promotes
the metadata from RdExc@t to RdSh. Since all states can be

encoded in a single metadata word, it is possible to use one
compare-and-swap (CAS) instruction to update the metadata
(Section 7).

Snappy-I’s analysis. Algorithms 7 and 8 show the analysis
that Snappy-I performs at each program write and read. In
Algorithm 7, if the last write to x comes from the same
region, the current write can skip the rest of the analysis
operations (line 3) since the metadata does not need to be
updated. If the last write is from the same thread T the
write can update the metadata with the epoch of the current
region (Rc). Otherwise, T handles WrEx*@t and RdEx*@t
(* denotes “any clock value”) as Snappy-P by detecting
a write–write or a read–write conflict (lines 4–14). If the
variable is in RdSh state, Snappy-I treats every other threads’
ongoing region as having potential read–write conflicts with
T’s current write (lines 15–18).

In Algorithm 8, if the same region has already read or
write the variable or the variable is in RdSh state, T does not
need to update the metadata record (line 3). If the read is the
first read in a region before any writes, the read overrides the
metadata record from WrExc’@t to RdExc@T, so that a write
from a different thread can still detect a read–write conflict
precisely at a WrExc’@t to WrExc@T transition instead of hav-
ing a potential read–write conflict (an alternative is to change
the metadata to RdSh, but it would lead to unnecessary im-
precision and lower availability).

7. Implementation
We have implemented FastRCD-A, Valor-A, Snappy-P, and
Snappy-I in Jikes RVM, a Java virtual machine [8, 9]. We
choose Jikes RVM because (1) although it targets research, it
performs competitively with commercial JVMs [14]; and (2)
our implementations extend publicly available Jikes RVM
implementations of FastRCD and Valor [14].

Following the FastRCD and Valor implementations, our
implementations target IA-32 and extend both of Jikes
RVM’s just-in-time compilers to instrument synchronization
operations and memory accesses. All implementations in-
strument the same points (field and array element accesses),
demarcate regions in the same way (at lock, monitor, thread,
and volatile operations), and reuse code as much as possible.
The compilers instrument all application code, and the ap-

8

Threads Memory accesses Conflicts Dyn. Avg. accesses
Total Max live Reads Writes Write–write Write–read Read–write SFRs per SFR

eclipse6 18 12 4,500M 1,400M 0 3.2K 21 150M 40
hsqldb6 402 102 250M 31M 0 33 1.9 11M 25
lusearch6 65 65 1,100M 400M 0 96 0 9.9M 150
xalan6 9 9 990M 220M 1.4K 520 26 58M 21

avrora9 27 27 900M 440M 380K 3.4M 25K 3.9M 350
jython9 3 3 720M 230M 0 0 0 100M 9.2
luindex9 2 2 290M 97M 0 0 0 540K 720
lusearch9* 32 32 1,100M 350M 38 5.7K 22 7.2M 210
pmd9 5 5 290M 97M 6.6K 5.3K 120 2.4M 160
sunflow9* 64 32 6,700M 720M 0 3.9 4.9 16K 450K
xalan9* 32 32 940M 210M 200 1.4K 42 22M 53

Table 1. Runtime characteristics of the evaluated programs, rounded to two significant figures. *Three programs support varying the number
of active application threads; by default, this value is equal to the number of cores (32 in our experiments).

Algorithm 7 WRITE [Snappy-I]: thread T writes x
1: let oldMetadata← x.state
2: let c← clock(T)
3: if oldMetadata 6=WrExc@T then .First write to x by this

region?
4: if oldMetadata =WrEx*@t then
5: let c@t← oldMetadata
6: if clock(t) ≤ c+ 1 then .Write–write conflict?
7: if deadlocked then
8: throw consistency exception
9: else

10: Retry from line 1
11: else if oldMetadata = RdEx*@t then
12: let c@t← oldMetadata
13: if clock(t) = c then .Potential read–write conflict?
14: T.waitMap[t]← clock(t)
15: else if oldMetadata = RdSh then
16: for each thread t’ do
17: if t’ 6= T then .Potential read–write conflicts?
18: T.waitMap[t′]← clock(t’)
19: x.state←WrExc@T

plication calls an instrumented compiled version of the Java
libraries (the JVM, which is written in Java, calls a sepa-
rately compiled, uninstrumented version of the libraries).

Following the FastRCD implementation, FastRCD-A and
Snappy-P add two words of metadata for tracking writes
and reads. While each variable has only a write epoch, its
read metadata can be inflated to a pointer that points to a
read map. In contrast, Snappy-I use one word of metadata:
21 bits for the clock, 9 bits for the thread ID, and 2 bits
for encoding the state (write-exclusive vs. read-exclusive vs.
read-shared). Snappy-I can reset clocks to either 0 or 1 at
full-heap garbage collection to avoid overflow [14]; or it can
ignore overflow, in which case false positive conflicts due to
wraparound are unlikely. In all implementations, each per-
field metadata is laid out beside the field, while an array’s
per-element metadata is referenced indirectly through the
array’s header.

Algorithm 8 READ [Snappy-I]: thread T reads x
1: let oldMetadata← x.state
2: let c← clock(T)
3: if oldMetadata 6= RdExc@T ∧ oldMetadata 6= WrExc@T ∧

oldMetadata 6= RdSh then
4: newReadMetadata← RdExc@T

5: if oldMetadata =WrEx*@t then
6: let c’@t← oldMetadata
7: if T 6= t ∧ clock(t) ≤ c’+ 1 then .Write–read conflict?
8: if deadlocked then
9: throw consistency exception

10: else
11: Retry from line 1
12: else if oldMetadata = RdEx*@t then
13: let c’@t← oldMetadata
14: if clock(t) = c’ then .Concurrent reader?
15: newReadMetadata← RdSh
16: x.state← newReadMetadata

Instrumentation atomicity. Following FastRCD, FastRCD-
A, and Snappy-P guarantee instrumentation atomicity by
“locking” one of the variable’s metadata words (using an
atomic operation and spin loop) and “unlocking” (using a
store and fence) when updating the metadata. The instru-
mentation does not perform any synchronization when the
instrumentation performs no metadata updates (for a read or
write in the same region). These analyses require lock and
unlock operations to ensure instrumentation atomicity, since
metadata is two words or more (due to a possible read map).
In contrast, following Valor, Valor-A and Snappy-I use a sin-
gle word of metadata per variable, and ensure instrumenta-
tion atomicity by using a single atomic operation at the end
of the analysis to atomically update the state.

Waiting at conflicts. Instrumentation for the FastRCD-A,
Valor-A, Snappy-P and Snappy-I waits when it detects a
region conflict. In order for a thread T to wait on another
thread t’s clock to change, T waits on a monitor associated
with t; t notifies T that it has finished its region by broad-
casting on the monitor at region boundaries.

9

8. Evaluation
This section evaluates the availability, performance, scalabil-
ity, space usage, and other characteristics of our approaches
and existing approaches for providing RSx and SIx.

8.1 Methodology
Benchmarks. We evaluate our implementations using bench-
marked versions of large, real applications: the DaCapo
benchmarks [15] with the default workload size, versions
2006-10-MR2 and 9.12-bach (distinguished with names suf-
fixed by 6 and 9) [15]. We omit single-threaded programs
and programs that Jikes RVM 3.1.3 cannot execute.
Experimental setup. For each implementation, we build a
high-performance configuration of Jikes RVM that adap-
tively optimizes the code and uses the default, high-perfor-
mance, generational garbage collector [16]. The garbage col-
lector adjusts the heap size automatically at run time. Each
performance result is the mean of 25 trials. We use special
statistics-gather configurations to collect statistics, and re-
port the mean of 10 trials. We report 95% confidence inter-
vals for both statistics and execution times.
Platform. The experiments execute on an Intel Xeon E5-
4620 machine with four 8-core processors (32 cores total),
running RedHat Enterprise Linux 6.7, kernel 2.6.32.
Run-time characteristics. Table 1 shows characteristics of
the evaluated programs. The Threads columns report both
threads created and maximum threads active at any time. The
remaining columns show statistics collected with Snappy-
P (the statistics from other configurations are similar, since
these statistics are not specific to configurations). The Mem-
ory accesses are executed memory accesses (loads and stores
of fields and array elements), which all configurations in-
strument. The Conflicts column shows how many conflicts
of each type occur (during execution under Snappy-P). Con-
flicts vary significantly in count and type across programs,
but they are generally many orders of magnitude smaller
than total memory accesses, except for avrora9, which in-
curs millions of write–read conflicts.

The last two columns report executed synchronization-
free regions (SFRs) and average memory accesses executed
in each SFR. All programs except sunflow9 perform syn-
chronization at least every 720 memory accesses.

8.2 Availability
Under the DRF0 consistency model, data races are essen-
tially errors since they have undefined or weak semantics
(Section 2.1). However, in practice, language and hard-
ware implementations typically ignore data races silently
(rather than treating them as fail-stop errors), and thus real
programs—including those we evaluate—often contain data
races that commonly manifest but do not cause problems
under typical compilation and execution environments. In
contrast, by providing RSx and SIx, our work follows a
line of research that treats some or all data races as er-
rors [14, 18, 24, 31, 53, 56, 73, 80]. In order to avoid fre-

quent exceptions in production environments, developers
would need to identify and fix data races that commonly
lead to consistency exceptions when using Valor or Snappy
or another technique that provides RSx or SIx (e.g., during
in-house, alpha, and beta testing).

Since the programs we evaluate have not been developed
or debugged under the assumption that data races are (fail-
stop) errors, they throw consistency exceptions frequently
under RSx and SIx. We compare the numbers of consis-
tency exceptions generated under different approaches for
RSx and SIx. From that, we extrapolate which approaches
would be more likely to avoid exceptions if programs were
developed and debugged to avoid consistency exceptions.

Table 2 compares consistency exceptions raised by Fast-
RCD, Valor, FastRCD-A, Valor-A, Snappy-P, and Snappy-
I. Our implementations do not actually generate exceptions;
rather, they simply report the exception and allow execution
to proceed. In case of a deadlock, the thread that created
the cycle of dependences is allowed to proceed immediately.
FastRCD and Valor report an exception whenever they de-
tect a conflict. FastRCD-A, Valor-A, Snappy-P, and Snappy-
I report an exception whenever they detect a deadlock. Valor
and Valor-A also report an exception whenever they infer a
conflict via a read validation failure.

Since some executed regions may have many related con-
flicts, the first row for each program is the number of dy-
namic regions that report at least one exception. The second
row is the number of consistency exceptions reported during
the program execution. Each result is the mean of excep-
tional regions or exceptions, ± 95% a confidence interval.
Waiting at conflicts. We first consider the effect of wait-
ing at conflicts rather than generating an exception, i.e.,
Section 4’s innovation that yields FastRCD-A and Valor-A.
Based on comparing FastRCD-A with FastRCD and Valor-A
with Valor, the effect of waiting at conflicts is substantial, re-
ducing regions that report an exception by up to three orders
of magnitude. Our evaluation of waiting at conflicts—which
to our knowledge is the first such evaluation—suggests that
this approach is generally effective at increasing the ability
to avoid consistency exceptions while still preserving con-
sistency models such as RSx and SIx.
RSx versus SIx. A key intended benefit of Snappy is that
by providing SIx, it can potentially avoid consistency excep-
tions encountered by providing RSx. To evaluate this bene-
fit, we compare primarily exceptions generated by Snappy-P
versus FastRCD-A, which are identical except that Snappy-
P can tolerate read–write conflicts. We find that Snappy-P
generally avoids consistency exceptions compared to Fast-
RCD-A: Snappy-P has fewer exceptional regions than Fast-
RCD-A for 10 programs, never has more exceptional regions
than FastRCD-A, and for the other 1 program (i.e., eclipse6)
there is no statistically significant difference.
Relaxing Snappy’s precision. Another potential benefit of
Snappy is that by relaxing precision, it can improve per-
formance. In order to evaluate the cost of this, we com-

10

FastRCD Valor FastRCD-A Valor-A Snappy-P Snappy-I

eclipse6 6.8K ± 10K 260 ± 510 0.2 ± 0.5 0.2 ± 0.3 0.3 ± 0.6 1.2 ± 1.6
(14K ± 24K) (1.8K ± 3.5K) (0.2 ± 0.5) (0.7 ± 0.9) (0.3 ± 0.6) (1.2 ± 1.6)

hsqldb6 27 ± 2.7 73 ± 2.6 0.8 ± 0.5 0.6 ± 0.3 0.1 ± 0.1 1.0 ± 0.5
(53 ± 5.6) (140 ± 5.4) (0.8 ± 0.5) (0.6 ± 0.3) (0.1 ± 0.1) (1.2 ± 0.6)

lusearch6 0.1 ± 0.1 0.2 ± 0.2 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0.1 ± 0.1) (0.2 ± 0.2) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

xalan6 48 ± 1.7 53 ± 1.7 12 ± 1.3 25 ± 1.1 5.5 ± 1.4 10 ± 1.3
(120 ± 5.8) (93 ± 3.4) (12 ± 1.3) (39 ± 1.1) (5.5 ± 1.5) (11 ± 1.4)

avrora9 200K ± 3.1K 230K ± 2.6K 38K ± 760 28K ± 400 16K ± 430 18K ± 430
(610K ± 6.4K) (670K ± 9.7K) (39K ± 820) (36K ± 920) (24K ± 730) (27K ± 760)

jython9 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

luindex9 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

lusearch9 63 ± 9.7 62 ± 7.3 62 ± 7.6 13 ± 3.3 20 ± 3.7 19 ± 5.7
(110 ± 25) (93 ± 13) (62 ± 7.6) (13 ± 3.3) (21 ± 4.5) (21 ± 6.6)

pmd9 450 ± 150 370 ± 150 91 ± 10 71 ± 7.2 52 ± 9.5 77 ± 7.2
(3.3K ± 520) (3.5K ± 930) (93 ± 11) (170 ± 62) (110 ± 51) (120 ± 17)

sunflow9 6.1 ± 1.8 11 ± 3.6 0 ± 0 0 ± 0 0 ± 0 4.6 ± 1.1
(23 ± 6.3) (37 ± 14) (0 ± 0) (0 ± 0) (0 ± 0) (4.7 ± 1.2)

xalan9 330 ± 35 3.0K ± 490 4.7 ± 3.7 40 ± 3.6 0.3 ± 0.4 16 ± 3.2
(1.5K ± 220) (6.2K ± 1.2K) (4.7 ± 3.7) (40 ± 3.6) (0.3 ± 0.4) (19 ± 4.5)

Table 2. The number of consistency exceptions reported by approaches that provide RSx and SIx. For each program, the first row is dynamic
regions that report at least one exception, and the second row is dynamic exceptions reported. Reported values are the mean of 10 trials,
including 95% confidence intervals, rounded to two significant figures (if ≥1.0).

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

geomean

0

100

200

300

400

500

O
v

e
r
h

e
a

d
 (

%
) FastRCD

Valor

FastRCD-A

Valor-A

Snappy-P

Snappy-I

Figure 4. Runtime overhead added to unmodified Jikes RVM by FastRCD, Valor, and our implementations of FastRCD-A, Valor-A, Snappy-
P, and Snappy-I.

pare reported consistency exceptions for Snappy-P and
Snappy-I. Unsurprisingly, Snappy-I reports more exceptions
than Snappy-P, since Snappy-I introduces waiting at region
boundaries for spurious read–write conflicts. This effect is
mixed across programs: for 6 programs Snappy-I generates
more exceptions than Snappy-P, whereas we find no statisti-
cally significant difference for the other 5 programs.

Overall, waiting at conflicts and providing SIx instead of
RSx both increase availability, while relaxing Snappy’s pre-
cision decreases availability, but perhaps not excessively.
The suitability of each approach not just on its availability
but also on its performance, discussed next.

8.3 Performance
This section measures and compares the effect on perfor-
mance of various approaches for providing strong memory
models. Since executions are multithreaded, performance
overheads include not just instrumentation overhead but also
time spent on waiting, which differs among approaches due
to different conditions for waiting. Section 8.5 attempts to
separate out this cost by measuring performance for varied
application thread counts.

Figure 4 shows the run-time overhead added by the con-
figurations from Section 8.1 to execution on an unmodified
JVM. As prior work shows, FastRCD adds high run-time
overhead in order to maintain last readers, while Valor incurs
significantly lower overhead by logging reads locally and
validating them lazily [14]. FastRCD-A and Valor-A each

11

add additional overhead over FastRCD-A and Valor-A, re-
spectively, due to the time spent waiting at conflicts.

Snappy-P tracks write and read metadata in the same way
as FastRCD-A, so it unsurprisingly incurs similar overhead.
However, Snappy-P incurs slightly less overhead than Fast-
RCD-A because Snappy-P provides SIx and thus can relax
its waiting at read–write conflicts (by deferring waiting un-
til region end; Section 6). However, Snappy-P adds 260%
overhead on average in order to provide precise conflict de-
tection. In contrast, Snappy-I enables a significantly faster
analysis that slows programs by 128% on average.

To understand the performance difference between Snappy-
I and Snappy-P, we implemented a configuration (not shown
in the figure) that tracks both read and write metadata in a
way similar to Snappy-P (i.e., separate metadata words for
the writer and reader(s), except that it does not track multi-
ple readers precisely, instead using a simple “read shared”
when multiple concurrent reader regions exist. On average
this configuration incurs 75% of the overhead that Snappy-
P incurs over Snappy-I, suggesting that most but not all of
Snappy-I’s performance advantage comes from its ability to
represent its metadata in a single metadata word, leading to
significantly simpler and cheaper instrumentation.

To isolate Snappy-I’s overhead due to waiting at con-
flicts (versus instrumentation overhead), we also evaluated
a Snappy-I configuration (not shown in the figure) that does
not wait at conficts, but instead allows a thread to proceed
immediately after detecting a region conflict. Compared
with this “no waiting” configuration, the default Snappy-I
configuration adds only 9.5% additional overhead (relative
to baseline, unmodified execution), suggesting that little of
Snappy-I’s overhead is due to waiting at conflicts. This result
makes sense conflicts are usually many orders of magnitude
smaller than total memory accesses. The entire execution
time therefore is still dominated by instrumentation over-
head added to memory accesses.

8.4 Performance–Availability Tradeoff
In order to evaluate availability and performance together,
we plot the previous availability and performance results in
Figure 6. The x-axis is the geomean of run-time overhead
across all programs. The y-axis is availability, which is de-
fined as the geomean of memory accesses performed with-
out interruption by a consistency exception. That is, for each
program, availability = # memory accesses

consistency exceptions+1 . (In contrast,
taking the geomean of exceptions would be problematic be-
cause some values are 0.) Values closer to the top left corner
represent a better performance–availability tradeoff.

Valor has the best performance, but its availability is sig-
nificantly worse than FastRCD-A, Valor-A, Snappy-P, and
Snappy-I. Snappy-P has the best availability, but its perfor-
mance overhead is relatively high. Snappy-I and Valor-A ar-
guably have the best tradeoff between availability and per-
formance. We note that Snappy-I has lower space overhead
than other implementations (Section 8.6), and it does not

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

FastRCDValor

FastRCD-A

Valor-A

Snappy-P

Snappy-I

Run-time overhead (%)

A
v
a
ila

b
ili

ty
 (

#
m

ill
io

n
s

o
f

u
n

in
te

rr
u

p
te

d
 a

cc
.)

Figure 6. The comparison of performance and availability of dif-
ferent memory models.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

lusearch9

pmd9
sunflow9

xalan9

geomean

0

100

200
M

a
x
im

u
m

 m
em

o
ry

 o
v
er

h
ea

d
 (

%
)

FastRCD-A

Valor-A

Snappy-P

Snappy-I

Figure 7. Run-time space overhead of FastRCD-A, Valor-A,
Snappy-P, and Snappy-I.

have Valor-A’s disadvantages of imprecise exceptions and
safety issues for unsafe languages (Section 4.2).

8.5 Scalability
Approaches that avoid exceptions by waiting at conflicts—
FastRCD-A, Valor-A, Snappy-P, and Snappy-I—incur not
only instrumentation overhead but also overhead due to wait-
ing. In an effort to separate out the conflicts, this section
evaluates scalability across varying numbers of applications
threads. Three of the evaluated programs support varying the
number of application threads (Table 1). Figure 5 compares,
for 1–32 application threads, the execution time of the wait-
ing and non-waiting versions of implementations that are
otherwise identical. We leave out Snappy-P and only show
Snappy-I since the measurement here is whether waiting
at conflicts hurt scalability instead of instrumentation over-
head. We use Snappy-I (No wait) (introduced in the last sub-
section) as a comparison configuration to Snappy-I.

Overall, supporting RSx and SIx with waiting has no
detrimental effect on scalability. For all three benchmarks,
the waiting versions (FastRCD-A, Valor-A, Snappy-I) scale
equally well as the non-waiting configurations (FastRCD,
Valor, Snappy-I (No wait)).

12

1 2 4 8 16 32
0

10

20

30

40

E
x
e
c
u

ti
o
n

 t
im

e
 (

s)

FastRCD

FastRCD-A

Valor

Valor-A

Snappy-I (No wait)

Snappy-I

(a) lusearch9

1 2 4 8 16 32
0

40

80

120

(b) sunflow9

1 2 4 8 16 32
0

20

40

60

(c) xalan9

Figure 5. Execution time of the configurations that can incur waiting versus configurations that do not incur waiting, for 1–32 application
threads. The legend applies to all graphs.

8.6 Space Overhead
The approaches incur space overhead in order to represent
write and read metadata. Figure 7 shows the space overhead
of all configurations that wait at conflicts, relative to unmod-
ified JVM execution. For each execution, we define its space
usage as the maximum memory used after any full-heap gar-
bage collection (GC). We omit luindex9 since its baseline
execution triggers no full-heap GCs.

On average, FastRCD-A adds 105% space overhead in
order to maintain precise write and read metadata, which is
particularly costly for variables with concurrent reader re-
gions. Snappy-P adds similar memory overhead (103% on
average), which makes sense because it maintains the same
metadata as FastRCD-A. Although Valor-A avoids storing
per-variable read metadata, it still adds high space over-
head (110% on average) due to maintaining per-thread read
logs. Per-program space overheads depend largely on thread
counts and region size (Table 1).

Snappy-I adds 58% average space overhead, about half
as much as the other approaches. Snappy-I uses less space by
not maintaining precise information about reads—particularly
in the case of multiple readers—whereas the other configu-
rations maintain precise information about reads (including
Valor-A, which maintains them in pre-thread logs). Further-
more, Snappy-I is able to use a single metadata word per
field and array element for write and read metadata.

9. Related Work
This section compares our work against prior work not al-
ready covered in Section 2.

Enforcing region serializability. Prior work has enforced
serializability of synchronization-free regions (RS), relying
on heavyweight support for speculative execution [61]. The
costs and complexity for enforcing RS are similar to those
encountered in software and (unbounded) hardware transac-
tional memory implementations (e.g., [10, 28, 30, 39, 81]).
Furthermore, operations such as as I/O and system calls are
not generally amenable to speculative execution [40].

Serializability of bounded regions. Prior work supports a
memory model based on serializability of regions smaller
than SFRs [7, 54, 56, 69, 73]. This approach can enable ar-
chitecture or analysis support that is less complex than for

full SFRs. In addition to being weaker than RSx, bounded
region serializability requires restricting compiler optimiza-
tions across region boundaries. Our SIx model and Snappy
analyses relax RSx in a different way: they retain full SFRs
but provide isolation but not atomicity, in an effort to im-
prove availability and reduce costs and complexity.

Detecting and tolerating data races. Data race detectors
that soundly and precisely check the happens-before rela-
tion [44] can provide RSx, by throwing a consistency excep-
tion on every detected data race. However, state-of-the-art
happens-before detectors slow programs by nearly an order
of magnitude on average or rely on custom hardware sup-
port [31, 36, 80]. (Although prior work reports slowdowns
of only 2X for Goldilocks [31], Flanagan and Freund show
that using realistic methodology would incur an estimated
25X average slowdown [36].

Recent work introduces a data race detector called Clean
that detects write–write and write–read races but not read–
write races [68]. By providing fail-stop semantics at the de-
tected data races, Clean eliminates some of the most egre-
gious weak memory model behaviors (e.g., so-called “out-
of-thin-air” violations [21, 55]), Clean and Snappy both re-
lax the requirement of detecting read–write conflicts pre-
cisely. However, Clean incurs high overhead in order to track
the happens-before relation. It inherently cannot tolerate de-
tected data races: waiting at an access can avoid a detected
conflict but not a detected data race. Although Clean can
avoid some erroneous behaviors, it does not provide SIx or
any strong guarantee of isolation of regions.

Deterministic execution. Systems that provide determin-
istic multithreaded execution have employed mechanisms
that are related to those used by FastRCD-A, Valor-A, and
Snappy. DMP delays each region’s writes until a point where
all regions perform writes at the same time, in order to pro-
duce a deterministic outcome [12, 29]. Dthreads exploits ex-
isting relaxed memory models in order to perform loads and
stores in isolation and merge them at synchronization oper-
ations [51]. In contrast, Snappy detects conflicts in order to
provide the SIx memory model, and it waits at conflicts in
an effort to increase availability.

Snapshot isolation in other contexts. Database manage-
ment systems routinely support SI instead of strict serial-

13

izability semantics [32, 35, 64]. These systems typically im-
plement SI using multi-versioning to track multiple versions
of data, based on a globally ordered timestamp that pro-
vides a total order for all committed transactions. Maintain-
ing globally ordered transactions and multiple versions of
data at the programming language level would likely incur
high overhead and poor scalability.

Prior work has used SI as the isolation model for software
transactional memory (STM) systems [43, 49]. In contrast,
our work focuses on SI-based semantics for memory consis-
tency models. Furthermore, the database and STM work ex-
ecutes transactions speculatively (i.e., conflicts lead to roll-
backs), while our work converts data races with ill-defined
semantics to well-defined behaviors and employs SI instead
of RS in an effort to increase availability and reduce costs
and complexity.

10. Conclusion
The RSx memory model provides strong guarantees for all
executions, not just data-race-free executions, but introduces
two significant challenges in bringing RSx into practice:
availability and performance. We address these challenges
first by introducing extensions to existing approaches that
provide RSx, which our evaluation shows significantly im-
proved availability. We target even better availability by in-
troducing the new SIx memory model and a novel approach
for enforcing SIx called Snappy that enables configurations
that have difference performance–availability tradeoffs. Our
evaluation shows that Snappy-P reduces the chances of an
unavoidable consistency exception significantly. A high-
performance version of Snappy-I achieves much lower over-
head, but in turn loses the availability benefit provided by
SIx over RSx. Overall, this work represents an advance in
the state of the art by introducing novel memory models and
run-time approaches that enable new and compelling points
in the performance–availability space for strong memory
consistency models that use fail-stop semantics.

A. Valor-A Algorithms
In addition to the epoch(T) and clock(T) helper functions
used by FastRCD, Valor uses the following notation (based
closely on prior work [14]):

Wx – Represents last-writer metadata for variable x, as
〈v, c@t〉, where v is a version and c@t is an epoch. A
variable’s version starts at 0, and the analysis increments
it at every write to the variable.

T.readLog – Represents thread T’s read logs. Each entry in
the log has the form 〈x, v〉, where x identifies the variable
and v is x’s version when it was read.

We extend Valor to wait at detected conflicts instead of
throwing a consistency exception. We call the resulting anal-
ysis Valor-A. Algorithms 9–11 show Valor-A’s analysis at
writes, reads, and region boundaries.

Algorithm 9 WRITE [Valor-A]: thread T writes variable x
1: let 〈v, c@t〉 ←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) = c then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Wx← 〈v+1, epoch(T)〉 .Update write metadata

Algorithm 10 READ [Valor-A]: thread T reads variable x
1: let 〈v, c@t〉 ←Wx

2: if t 6= T ∧ clock(t) = c then .Write–read conflict?
3: if deadlocked then
4: throw consistency exception
5: else
6: Retry from line 1
7: T.readLog← T.readLog ∪ {〈x, v〉}

Algorithm 11 BOUNDARY [Valor-A]: T’s region ends
1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, c@t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Throw consistency exception .Read–write conflict?
5: T.readLog← ∅

B. Correctness of Snappy
This section provides arguments that Snappy (in particular,
Snappy-P) soundly and precisely provides SIx.

Theorem 1. Snappy is sound: If an execution completes
without deadlock under Snappy, the execution conforms to
snapshot isolation of synchronization-free regions (SI).

We have not proved this theorem; instead we provide an
argument for its correctness. Following from prior work,
FastRCD and FastRCD-A ensure that executions that com-
plete without exception or deadlock provide conflict seri-
alizability, a sufficient condition for region serializability
(Section 5.1) [14]. The difference between FastRCD-A and
Snappy is that Snappy allows execution to proceed past a
read–write conflict until the region end, at which point exe-
cution can proceed if the reader region has finished execut-
ing, even if it is waiting on read–write conflicts.

Consider an execution that completes without deadlock.
Let Ri be an ongoing region with a read to x, followed by
a write to x by region Rj . Snappy detects the read–write
conflict and allows Rj to continue executing until region
end, at which point Rj’s thread waits until Ri reaches its
region end. Thus, Rj cannot finish waiting at its region end
until Ri ends.

According to the definition of conflict SI, si ≺t ej due to
the read–write conflict. Our soundness concern here is that
the execution might also establish ej ≺t si (which would

14

violate conflict SI since ≺t is a partial order). However, if
we suppose ej ≺t si, then there must exist a (potentially
transitive) write–write or write–read conflict from Rj to Ri.
Snappy in that case will ensure that Ri does not reach its
end until Rj finishes waiting at its region end, which implies
a deadlock due to the conclusion above about Rj waiting
on Ri. A deadlock contradicts the original assumption that
the execution completes without deadlock. We thus conclude
that Snappy’s relaxation for read–write conflicts does not
lead to violations of SI.

Lemma 1. If an execution deadlocks under Snappy, it has a
write–write or write–read conflict.6

Proof. Suppose an execution deadlocks under Snappy, but
the execution has no write–write or write–read conflicts.
Since Snappy waits at program writes and reads only if there
is a write–write or write–read conflict (Algorithms 5 and 6),
Snappy does not wait at program reads or writes for this
execution.

The execution thus deadlocks by waiting at Snappy’s only
other waiting point, a region boundary (lines 3 in Algo-
rithm 4). Let T be a thread that is waiting at a region bound-
ary as part of a deadlock. According to the wait condition,
clock(t) = c. The value c comes from a t 7→ c entry in
T.waitMap (line 10 in Algorithm 5), which in turn comes
from a t 7→ c entry from Rx (line 8 in Algorithm 6). Rx[t]
comes from clock(t), which must be odd because t is exe-
cuting a region. So c must be odd in the wait condition at T’s
region boundary.

Since clock(t) = c, clock(t) is also odd, implying that
thread t is in the middle of executing a region (i.e., not
at a region boundary). Since Snappy waits only at region
boundaries for this execution, t’s region eventually finishes,
incrementing clock(t) and thus negating thread T’s waiting
condition, i.e., ¬(clock(t) = c). This contradicts the earlier
conclusion that T is waiting as part of a deadlock.

Theorem 2. Snappy is precise: If an execution deadlocks
under Snappy, it has a region conflict and a data race.

Proof. Suppose an execution deadlocks under Snappy. By
Lemma 1, the execution has a region conflict, which is a
sufficient condition for a data race.

Acknowledgments
We thank Man Cao, Aritra Sengupta, Jake Roemer, Rui
Zhang for helpful discussions.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking:

Static Race Detection for Java. TOPLAS, 28(2):207–255, 2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking
Parallel Languages and Hardware. CACM, 53:90–101, 2010.

[3] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Mod-
els: A Tutorial. IEEE Computer, 29:66–76, 1996.

6 Section 2.1 defines a region conflict.

[4] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In
ISCA, pages 2–14, 1990.

[5] A. Adya. Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[6] A. Adya, B. Liskov, and P. O’Neil. Generalized Isolation Level
Definitions. In ICDE, pages 67–78, 2000.

[7] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Mid-
kiff, and D. Wong. BulkCompiler: High-performance Sequential Con-
sistency through Cooperative Compiler and Hardware Support. In MI-
CRO, pages 133–144, 2009.

[8] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño Virtual Machine. IBM Systems Journal,
39(1):211–238, 2000.

[9] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399–417, 2005.

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded Transactional Memory. In HPCA, pages 316–327,
2005.

[11] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A Critique of ANSI SQL Isolation Levels. In SIGMOD, pages 1–10,
1995.

[12] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In ASPLOS, pages 53–64, 2010.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley Longman,
1986.

[14] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In OOPSLA, pages 241–
259, 2015.

[15] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, pages 169–190, 2006.

[16] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region Gar-
bage Collector with Space Efficiency, Fast Collection, and Mutator
Performance. In PLDI, pages 22–32, 2008.

[17] H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[18] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but
Data Races are Pure Evil. In RACES, pages 9–14, 2012.

[19] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68–78, 2008.

[20] H.-J. Boehm and S. V. Adve. You Don’t Know Jack about Shared
Variables or Memory Models. CACM, 55(2):48–54, 2012.

[21] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In MSPC, pages 7:1–7:6, 2014.

[22] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In PLDI, pages 255–268, 2010.

[23] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA,
pages 211–230, 2002.

[24] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for System
Support for Concurrency Exceptions. In HotPar, 2009.

15

[25] M. Christiaens and K. D. Bosschere. Accordion Clocks: Logical
Clocks for Data Race Detection. In Euro-Par, pages 494–503, 2001.

[26] M. Christiaens and K. De Bosschere. TRaDe, A Topological Approach
to On-the-fly Race Detection in Java Programs. In Symposium on Java
Virtual Machine Research and Technology Symposium, pages 15–15,
2001.

[27] L. Dalessandro and M. L. Scott. Sandboxing Transactional Memory.
In PACT, pages 171–180, 2012.

[28] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In PPoPP, pages 67–78,
2010.

[29] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, pages 85–96, 2009.

[30] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM
Can Be More than a Research Toy. CACM, 54:70–77, 2011.

[31] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255, 2007.

[32] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database Replication
Using Generalized Snapshot Isolation. pages 73–84, 2005.

[33] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. In SOSP, pages 237–252, 2003.

[34] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective
Data-Race Detection for the Kernel. In OSDI, pages 1–16, 2010.

[35] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Mak-
ing Snapshot Isolation Serializable. ACM Trans. Database Syst.,
30(2):492–528, 2005.

[36] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121–133, 2009.

[37] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance Evaluation
of Memory Consistency Models for Shared-memory Multiprocessors.
In ASPLOS, pages 245–257, 1991.

[38] P. Godefroid and N. Nagappan. Concurrency at Microsoft – An
Exploratory Survey. In EC2, 2008.

[39] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional Memory Coherence and Consistency. In ISCA,
pages 102–113, 2004.

[40] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[41] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced Data
Race Detection. In SOSP, pages 406–422, 2013.

[42] E. Knapp. Deadlock Detection in Distributed Databases. ACM Com-
puting Surveys, 19(4):303–328, 1987.

[43] I. Kuru, B. K. Ozkan, S. O. Mutluergil, S. Tasiran, T. Elmas, and
E. Cohen. Verifying Programs under Snapshot Isolation and Similar
Relaxed Consistency Models. In TRANSACT, 2014.

[44] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558–565, 1978.

[45] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Computer, 28:690–691, 1979.

[46] N. G. Leveson and C. S. Turner. An Investigation of the Therac-25
Accidents. IEEE Computer, 26(7):18–41, 1993.

[47] C. Lin, V. Nagarajan, and R. Gupta. Efficient Sequential Consistency
Using Conditional Fences. In PACT, pages 295–306, 2010.

[48] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient Sequential
Consistency via Conflict Ordering. In ASPLOS, pages 273–286, 2012.

[49] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson.
SI-TM: Reducing Transactional Memory Abort Rates Through Snap-
shot Isolation. In ASPLOS, pages 383–398, 2014.

[50] H. Litz, R. J. Dias, and D. R. Cheriton. Efficient Correction of
Anomalies in Snapshot Isolation Transactions. 11(4):65:1–65:24,
2015.

[51] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient Determin-
istic Multithreading. In SOSP, pages 327–336, 2011.

[52] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In
ASPLOS, pages 329–339, 2008.

[53] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In ISCA, pages 210–221, 2010.

[54] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting
and Surviving Atomicity Violations. In ISCA, pages 277–288, 2008.

[55] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[56] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory Model for
Concurrent Programming Languages. In PLDI, pages 351–362, 2010.

[57] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. A Case for an SC-Preserving Compiler. In
PLDI, pages 199–210, 2011.

[58] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race
Detection. In POPL, pages 327–338, 2007.

[59] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for
Java. In PLDI, pages 308–319, 2006.

[60] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection.
In PPoPP, pages 167–178, 2003.

[61] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region
serializability for all. In HotPar, 2013.

[62] C. H. Papadimitriou. The Serializability of Concurrent Database
Updates. J. ACM, 26(4):631–653, 1979.

[63] PCWorld. Nasdaq’s facebook glitch came from race conditions,
2012. http://www.pcworld.com/article/255911/nasdaqs_
facebook_glitch_came_from_race_conditions.html.

[64] D. R. K. Ports and K. Grittner. Serializable Snapshot Isolation in
PostgreSQL. 5(12):1850–1861, 2012.

[65] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data
Race Detection in Multithreaded C++ Programs. CCPE, 19(3):327–
340, 2007.

[66] P. Ranganathan, V. Pai, and S. Adve. Using Speculative Retirement
and Larger Instruction Windows to Narrow the Performance Gap
between Memory Consistency Models. In SPAA, page pages, 1997.

[67] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In SOSP, pages 27–37, 1997.

[68] C. Segulja and T. S. Abdelrahman. Clean: A Race Detector with
Cleaner Semantics. In ISCA, pages 401–413, 2015.

[69] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.
Hybrid Static–Dynamic Analysis for Statically Bounded Region Seri-
alizability. In ASPLOS, pages 561–575, 2015.

[70] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer – data race
detection in practice. In WBIA, pages 62–71, 2009.

[71] J. Ševčík and D. Aspinall. On Validity of Program Transformations in
the Java Memory Model. In ECOOP, pages 27–51, 2008.

[72] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel
Programs that Share Memory. TOPLAS, 10(2):282–312, 1988.

[73] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and M. Musu-
vathi. Efficient Processor Support for DRFx, a Memory Model with
Exceptions. In ASPLOS, pages 53–66, 2011.

[74] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musu-
vathi. End-to-End Sequential Consistency. In ISCA, pages 524–535,
2012.

[75] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua.
Compiler Techniques for High Performance Sequentially Consistent
Java Programs. In PPoPP, pages 2–13, 2005.

16

[76] U.S.–Canada Power System Outage Task Force. Final Report on the
August 14th Blackout in the United States and Canada. Technical
report, Department of Energy, 2004.

[77] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70–82, 2001.

[78] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection
on Millions of Lines of Code. In ESEC/FSE, pages 205–214, 2007.

[79] L. Wang and S. D. Stoller. Accurate and Efficient Runtime Detection
of Atomicity Errors in Concurrent Programs. In PPoPP, pages 137–
146, 2006.

[80] B. P. Wood, L. Ceze, and D. Grossman. Low-Level Detection of
Language-Level Data Races with LARD. In ASPLOS, pages 671–686,
2014.

[81] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S.
Lee. Kicking the Tires of Software Transactional Memory: Why the
Going Gets Tough. In SPAA, pages 265–274, 2008.

[82] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking. In SOSP, pages 221–
234, 2005.

[83] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted
Lockset-based Race Detection. In HPCA, pages 121–132, 2007.

17

